We present a semi-analytical method to calculate the global evolution of the ionized state of the inter- galactic medium, on the basis of physically motivated star formation histories in the early universe. This method incorporates not only the conventional scenarios in which the star formation rate is proportional to the growth rate of the halo collapse fraction, but also the more sophisticated scenarios in which the star formation is self-regulated. We show that this variance in the star-formation model strongly impacts the resulting reionization history, which bears a prospect for observational discrimination of these models. We discuss how observations of the anisotropic polarization of the cosmic microwave background and the global 21cm signal from the high-redshift universe, most notably by Planck and EDGES, may probe the history of reionization.
The AKARI Deep Field South (ADF-S) is a large extragalactic survey field that is covered by multiple instruments, from optical to far-IR and radio. I summarise recent results in this and related fields prompted by the release of the Herschel far-IR/submm images, including studies of cold dust in nearby galaxies, the identification of strongly lensed distant galaxies, and the use of colour selection to find candidate very high redshift sources. I conclude that the potential for significant new results from the ADF-S is very great. The addition of new wavelength bands in the future, eg. from Euclid, SKA, ALMA and elsewhere, will boost the importance of this field still further.
How galaxy evolution diers in dierent environments is one of the intriguing questions in the study of structure formation. While galaxy properties are clearly distinguished in different environments in the local universe, it is still an open issue what causes this environmental dependence of various galaxy properties. To address this question, in this work, we investigate the build-up of passive galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing on its dependence on galaxy environment. In the UKIDSS/Ultra Deep Survey (UDS) field, we identify high-redshift galaxy cluster candidates within this redshift range. Then, using deep optical and near-infrared data from Subaru and UKIRT available in this field, we analyze and compare the stellar population properties of galaxies in the clusters and in the field. Our results show that the environmental effect on galaxy star-formation properties is a strong function of redshift as well as stellar mass | in the sense that (1) the effect becomes signicant at small redshift, and (2) it is stronger for low-mass (M* < 1010M⊙) galaxies. We have also found that galaxy stellar mass plays a more significant role in determining their star-formation property — i.e., whether they are forming stars actively or not — than their environment throughout the redshift range.
Galaxy clusters, the largest gravitationally bound systems, are an important subject of study to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to their environments. To date, massive clusters have been found unexpectedly (Kang & Im 2009; Gonzales et al. 2012) and the evolution of galaxies in clusters is still controversial (Elbaz et al. 2007; Faloon et al. 2013). Finding galaxy cluster candidates at z > 1 in a wide, deep imaging survey data will enable us to solve such issues of modern extragalactic astronomy. We report new candidate galaxy clusters in one of the wide and deep survey fields, the European Large Area ISO Survey North1 (ELAIS-N1) and North2 (ELAIS-N2) fields, covering a sky area of 8.75 deg2 and 4.85 deg2 each. We also suggest a new useful color selection technique to separate z > 1 galaxies from low - z galaxies by combining multi-wavelength data.