An experimental real-time hybrid method, which implements the wind response control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure,which is subjected to the excitations of the measured interface control force at its top story and an wind-load input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD
Forced vibration testing is important for correlating the mathematical model of a structure with the realone and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element(FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. System identification of real-scaled 5 story building structure which is located in UNISON INC. is conducted on the updated FE model.
본 논문에서는 지반 기진력을 받는 5층의 시험 구조물의 전동 레벨을 줄이기 위해 AC 서보모터를 이용한 복합 질량 감쇠기를 설계 및 제작하여, 5층의 시험구조물을 랜덤 및 지진 파형으로 가진하였을 때의 복합 질량 감소기와 동조 질량 감쇠기의 효과 및 제어 성능을 실험을 통해 비교 분석하였다. 이를 통해 복합질량 감쇠기는 동조 질량 감쇠기에 비하여 특히 과도 상태의 지진이 구조물의 2개 모드 이상을 동시에 가진할 경우에 구조물의 진동을 줄임에 훨씬 더 유용함을 확인하였다.