본 논문에서는 아이소-지오메트릭 형상 최적설계 기법에서 얻은 CAD 정보를 직접 활용하여, 3D 프린터를 활용한 실험적 검증을 위한 시편을 제작하였다. 유한요소법에서는 요소망에 내재하는 기하학적인 근사가 응답과 설계민감도 해석에서 정밀도 문제를 발생시킨다. 더욱이 유한요소 기반 형상 최적화 과정에서는 CAD와의 정보교환이 필수적이나 그 과정에서 최적설계 정보의 손실이 발생할 수 있다. 아이소-지오메트릭 기법은 CAD에서 사용된 동일한 NURBS 기저함수와 조정점을 사용하므로 법선벡터와 곡률과 같은 엄밀한 기하학적 정보를 응답해석과 설계민감도 해석에 사용할 수 있다. 또한 최적설계 과정에서 CAD와 정보교환 없이 복잡한 형상을 손쉽게 변경할 수 있다. 그러므로 최적의 설계의 재료량을 실험적 검증을 위한 시편제작에 엄밀하게 반영할 수 있다. 굽힘 하중을 받는 단순지지 구조물에 대한 최적설계 및 실험적 검증을 통해 최적형상이 초기 형상에 비해 더 큰 강성을 가지며 실험결과와 수치 해석결과가 매우 잘 일치함을 보였다. 또한 인장력을 받는 유공판에 대한 형상 최적설계를 수행하였으며, 비접촉식 3차원 변형 측정 장치를 이용하여 초기설계에 비해 최적설계에서 구멍주변에서의 응력집중 현상이 완화됨을 확인하였다. 따라서 수치적인 방법을 활용한 최적설계가 실제 구조물에 대한 실험에서도 유효함을 입증하였다고 할 수 있다. 또한, 아이소-지오메트릭 최적설계 방법론이 기존의 유한요소법에 비해서 최적설계 결과를 제작하여 활용하는데 있어서도 훨씬 효율적이고 엄밀한 방법임을 보였다.
본 논문에서는 아이소-지오메트릭 해석법을 이용하여 고주파수를 가지는 파워흐름 문제에 대하여 연속체 기반 형상 최적설계를 수행하였다. 아이소-지오메트릭 기법을 형상 최적설계에 적용하면, CAD 기하 모델링에서 쓰이던 NURBS 기저 함수가 직접 쓸 수 있기에 정확한 기하학 정보가 수치계산에서 고려되고, 이에 따라 형상 최적설계 관점에서 볼 때, 전통적인 유한요소법에 비해 향상되고 부드러운 설계 섭동량을 가지는 설계 매개화가 가능하게 된다. 즉, 정확한 기하 모델이 응답 해석과 설계민감도 해석에 쓰이게 되고, 이에 따라 설계영역 전체에서 법선 벡터와 곡률이 연속적으로 되게 된다. 결과적으로 정밀한 민감도 해석이 가능하게 된다. 몇 가지 수치예제를 통하여 개발된 아이소-지오메트릭 설계민감도가 유한차분 설계민감도와 비교하여 정확성을 확인할 수 있었으며, 형상 최적설계 문제를 통해서 본 방법론을 적용하여 검증하였다.
레벨셋방법과 헤비사이드 강화를 이용한 아이소-지오메트릭 위상최적설계 방법을 개발하였다. 레벨셋 방법에서는 초기 해석영역은 고정되어 있으며 경계는 레벨셋 함수값을 이용한 암시적인 동적 경계로 표현되며, 이는 복잡한 위상적 변화를 용이하게 표현할 수 있게 한다. 헤비사이드 강화는 기존의 기저함수에 내부 경계를 표현하는 강화 함수를 더함으로써 아이소-지오메트릭 해석법의 정밀도를 향상시킨다. 제안된 위상 최적설계 방법은 다음과 같은 이점을 갖는다. 아이소-지오메트릭 해석법을 이용하여 정밀한 기하 형상을 얻을 수 있으며 텐서 곱을 이용하여 정의된 패치의 한계를 헤비사이드 강화를 이용함으로써 해결할 수 있다. 단일 패치를 사용함으로써 연속적인 응력 분포를 얻어낼 수 있을 뿐 아니라 불연속적인 변위장 또한 표현해 낼 수 있다. 레벨셋 방법론이 암시적 동적 경계를 잘 표현하기 때문에 이를 이용하여 헤비사이드 강화를 이용한 아이소-지오메트릭 해석법에서 위상의 변화를 잘 표현해 낼 수 있다.
본 논문에서는 등기하 해석법을 이용하여 선형 탄성문제에 대한 형상 최적설계 기법을 개발하였다. 실용적인 공학문제에 대한 많은 최적설계 문제에서는 초기의 데이터가 CAD 모델로부터 주어지는 경우가 많다. 그러나 대부분의 설계 최적화 도구들은 유한요소법에 기초하고 있기 때문에 설계자는 이에 앞서 CAD 데이터를 유한요소 데이터로 변환해야 한다. 이 변환과정에서 기하 모델의 근사화에 따른 수치적 오류가 발생하게 되고, 이는 응답 해석뿐만 아니라 설계민감도 해석에 있어서도 정확도 문제를 발생시킨다. 이러한 점에서 등기하 해석법은 형상 최적설계에 있어서 유망한 방법론 중 하나가 될 수 있다. 등기하 해석법의 핵심은 해석에 사용되는 기저 함수와 기하 모델을 구성하는 함수가 정확히 일치한다는 것이다. 이러한 기하학적으로 정확한 모델은 설계민감도 해석 및 형상 최적설계에 있어서도 사용된다. 이로 인해 높은 정확도의 설계민감도를 얻을 수 있으며, 이는 설계구배 기반의 최적화에 있어서 매우 중요하게 작용한다. 수치 예제를 통하여 본 논문에서 제시된 등기하 해석 기반의 형상 최적설계 방법론이 타당함을 확인하였다.