검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Cadmium (Cd) is toxic heavy metal that accumulates in organisms after passing through their respiratory and digestive tracts. Although several studies have reported the toxic effects of Cd exposure on human health, its role in embryonic development during preimplantation stage remains unclear. We investigated the effects of Cd on porcine embryonic development and elucidated the mechanism. Methods: We cultured parthenogenetic embryos in media treated with 0, 20, 40, or 60 μM Cd for 6 days and evaluated the rates of cleavage and blastocyst formation. To investigate the mechanism of Cd toxicity, we examined intracellular reactive oxygen species (ROS) and glutathione (GSH) levels. Moreover, we examined mitochondrial content, membrane potential, and ROS. Results: Cleavage and blastocyst formation rates began to decrease significantly in the 40 μM Cd group compared with the control. During post-blastulation, development was significantly delayed in the Cd group. Cd exposure significantly decreased cell number and increased apoptosis rate compared with the control. Embryos exposed to Cd had significantly higher ROS and lower GSH levels, as well as lower expression of antioxidant enzymes, compared with the control. Moreover, embryos exposed to Cd exhibited a significant decrease in mitochondrial content, mitochondrial membrane potential, and expression of mitochondrial genes and an increase in mitochondrial ROS compared to the control. Conclusions: We demonstrated that Cd exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction. Our findings provide insights into the toxicity of Cd exposure on mammalian embryonic development and highlight the importance of preventing Cd pollution.
        4,000원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diabetic encephalopathy is a major complication with cognitive impairment and neurodegeneration in patients with type 1 or type 2 diabetes mellitus (DM). DM-induced glucolipotoxicity is a risk factor for Alzheimer’s disease–like phenotype, including amyloidogenesis, tau hyperphosphorylation, and neuronal apoptosis. Although the detailed mechanism underlying the pathogenesis of diabetic encephalopathy remains unclear, mitochondrial oxidative stress is emerging as a key factor for diabetic complications and neurodegeneration. A deeper understanding of the regulatory mechanism of mitochondrial oxidative stress under hyperglycemic conditions will provide insights into the development of therapeutic strategies for diabetic encephalopathy. Here, we review the role of mitochondrial oxidative stress in diabetic encephalopathy and the regulatory mechanisms by which high glucose induces the generation of mitochondrial reactive species oxygen species in neuronal cells. This review also summarizes the mitochondrial-dependent and -independent pathways (O-linked-N-acetylglucosaminylation, calcium, and glycogen synthase kinase 3β signaling) that regulate mitochondrial oxidative stress in a DM model.
        5,200원
        4.
        2018.11 구독 인증기관·개인회원 무료
        Mitochondria is energy generating organelle. It synthesizes ATP, which is the essential energy source of many cellular processes. During producing energy, some redox centres leak electrons to oxygen and it is contributory to the reactive oxygen species. Besides, mitochondria have significant functions in metabolism, calcium homeostasis, and fatty acid oxidation. Also mitochondria has importance to the breakdown of the ovarian follicles and could be factor determining oocyte of quality adversely. Increasing evidence shows that the number of mitochondria affect oocyte of developmental competence and maturation detrimentally during aging. Oocyte is the mitochondria-rich cell and enable the organelle to have competence for fertilization and early embryonic development. Occurrence of blastomere depends on distribution change of mitochondria which present in the egg. Lonicera caerulea treatment inhibited ovarian mitochondrial oxidative damage by suppressing mitochondrial reactive oxygen species (mROS) generation, decreasing apoptosis, controlling disintegration of mitochondrial membrane potential and conserving respiratory chain complex activities. The purpose of this study is to identify if mouse accepting treatment with L. caerulea could counter age-induced sterility and ovarian mitochondrial OS in a model organism of ovarian ageing.
        5.
        2012.07 서비스 종료(열람 제한)
        The molecular responses to various abiotic stresses were investigated by the approaches with transcriptomic analysis based on an ACP system. Here we identified differentially expressed genes under abiotic stresses in alfalfa seedlings and they were mostly unknown genes and a few common stress-related genes. Among them, mitochondrial small HSP23 was responded by the diverse stress treatment such as heat, salt, As stresses and thus it could be a strong candidate that may confer the abiotic stress tolerance to plants. When expressed in bacteria, recombinant MsHSP23 conferred tolerance to salinity and arsenic stress. Furthermore, MsHSP23 was cloned in a plant expressing vector and transformed into tobacco, a eukaryotic model organism. The transgenic plants exhibited enhanced tolerance to salinity and arsenic stress under ex vitro conditions. In comparison to wild type plants, the transgenic plants exhibited significantly lower electrolyte leakage. Moreover, the transgenic plants had superior germination rates when placed on medium containing arsenic. Taken together, these overexpression results imply that MsHSP23 plays an important role in salinity and arsenic stress tolerance in transgenic tobacco. The results of the present study show that overexpression of alfalfa mitochondrial MsHSP23 in both eukaryotic and prokaryotic model systems confers enhanced tolerance to salt and arsenic stress. This indicates that MsHSP23 could be used potentially for the development of stress tolerant transgenic crops, such as forages.