Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy. Numerous therapies have been proposed for its cure. Research is continually being conducted to develop new forms of treatment as current therapies are associated with numerous side-effects. Luteolin, a common dietary flavonoid, has been demonstrated to possess strong anti-cancer activity against various human cancer cell lines. Nevertheless, research into luteolin-based anticancer activity against oral cancer remains scarce. Thus, the objective of this study was to assess the effect of luteolin as an anti-cancer agent. After treatment with luteolin, Ca9-22 and CAL-27 oral cancer cells showed condensed nuclei and enhanced apoptotic rate with evidence of mitochondria-mediated apoptosis. Epithelial-mesenchymal transition (EMT) is closely related to tumor migration and invasion. Luteolin suppressed cancer cell invasion and migration in the current study. Elevated expression of E-cadherin, an adherens junction protein, was evident in both cell lines after luteolin treatment. Luteolin also significantly inhibited transcription factors (i.e., N-cadherin, Slug, Snail, Twist, and ZEB-1) that regulated expression of tumor suppressors such as E-cadherin based on Western blot analysis and quantitative PCR. Thus, luteolin could induce mitochondrial apoptosis and inhibit cancer cell invasion and migration by suppressing EMT-induced transcription factors.
Agaricus blazei is well known as a traditional medicinal mushroom and it has been shown to exhibit immunostimulatory and anti-cancer activity. However, the cellular and molecular mechanism of apoptosis of cancer cells is poorly understood. In this study, we have investigated whether A. blazei extract (ABE) exerts anti-proliferative and apoptotic effects on human leukemia THP-1 cells. It was found that ABE induced a time- and dose-dependent increase in leukemia cells apoptosis through caspase-3 activation and PARP cleavage. Activation of caspase- 9 induced by ABE suggested that ABE-induced signaling was mediated through a mitochondrial death pathway. In addition, we observed an elevation of ROS and a consequent loss of mitochondrial membrane potential, further suggesting that ABE-induced death signaling was mediated through a mitochondrial oxygen stress pathway. The antioxidant Nacetylcysteine, however, opposed ABE-mediated mitochondrial dysfunction, caspase activation, and apoptosis, supporting the role of ROS in the apoptotic process. We conclude that ABE induces apoptosisin human leukemia cells through a reactive oxygen species and caspase-dependent mitochondrial pathway.
Mitochondria are important regulators of both apoptosis and autophagy. One of the triggers for mitochondrial-mediated apoptosis is the production of reactive oxygen species (ROS), which include hydrogen peroxide, superoxide, hydroxyl radical, nitric oxide, and peroxynitrite. Recently, several studies have indicated that ROS may also be involved in the induction of autophagy. In the present study, we used H2O2 to induce mitochondrial stress and examined apoptotic- and autophagic-related gene expression and observed LC3 protein (autophagosome presence marker) expression in porcine parthenotes developing in vitro. In porcine four-cell parthenotes cultured for 5 days in NCSU37 medium containing 0.4% BSA, the developmental rate and mitochondrial distribution did not differ from that of the group supplemented with 100 μM H2O2 but significantly decreased in the group supplemented with 500 μM H2O2 (P<0.05). Transmission electron microscopy (TEM) indicated that whereas normal shaped mitochondria were observed in blastocysts from the control group, abnormal mitochondria (mitophagy) and autophagic vacuoles were observed in blastocysts from the group that received 500 μM H2O2. Furthermore, addition of H2O2 (100 μM and 500 μM) decreased cell numbers (P<0.05) and increased both apoptosis (P<0.05) and LC3 protein expression in the blastocysts. Real time RT-PCR showed that H2O2 significantly decreased mRNA expression of anti-apoptotic gene Bcl-xL but increased pro-apoptotic genes, Caspase 3 (Casp3) and Bak, and autophagy-related genes, microtubule-associated protein 1 light chain 3 (Map1lc3b) and lysosomal-associated membrane protein 2 (Lamp2). However, the addition of H2O2 had no effect on mRNA expression levels in nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b, and Cox6b1, but decreased mitochondrial DNA-encoded genes, D-loop (Dloop) and cytochrome b (Cytb), in blastocysts. These results suggest that H2O2 leads to mitochondrial dysfunction that results in apoptosis and autophagy, which is possibly related to porcine early embryo development.