Runt related transcription factors (RUNX), a family of well-known transcription factors, play key regulatory roles in diverse biological processes, such as proliferation, differentiation, and DNA repair. Of RUNX family, RUNX3 is the least well characterized of the three family members. Nevertheless, the role of RUNX3 as a key regulator in essential biological pathways has been reported and inactivation of RUNX3 leads to a variety of disease, such as cancer, via regulation of Wnt signaling and K-ras mutations in many mammalian tissues. Recent studies using RUNX3-deficient cells and mice revealed an association with hematopoiesis and hypersensitivity to granulocytecolony stimulating factor. Nevertheless, protein dynamics associated with RUNX3 remain poorly understood. In the present study, we performed a large-scale protein study from Runx3 knockout (KO) mouse embryonic stem cells (mESC) using a stable isotope labeling by amino acids (SILAC)-based quantitative proteomics approach. The results showed that 67 proteins were significantly up and downregulated after Runx3 KO. Bioinformatic analyses that revealed that these proteins have diverse biological functions, such as substances transport and cellular structure. Thus, our results enhance our current understanding of the function of RUNX3 in mESCs and suggest potential roles for RUNX proteins in diverse diseases. Additionally, our results can be used as a database to help us understand the mechanism of action of RUNX3.
Somatic cell nuclear transfer derived embryonic stem cells (NT-ESCs) have significant advantages in various fields such as genetics, embryology, stem cell science, and regenerative medicine. However, the poor establishment of NT-ESCs hinders various research. Here, we applied fasudil, a Rho-associated kinase (ROCK) inhibitor, to develop somatic cell nuclear transfer (SCNT) embryos and establish NT-ESCs. In the study, MII oocytes were isolated from female B6D2F1 mice and performed SCNT with mouse embryonic fibroblasts (MEFs). The reconstructed NT-oocytes were activated artificially, and cultured to blastocysts in KSOM supplemented with 10 μM fasudil. Further, the blastocysts were seeded on inactivated MEFs in embryonic stem cell medium supplemented with 10 μM fasudil. A total of 26% of embryos formed into blastocysts in the fasudil treated group, while this ratio was 44% in the fasudil free control group. On the other hand, 30% of blastocysts were established NT-ESCs after exposure of fasudil, which was significantly higher than the control group (10%). The results suggest that fasudil reduced blastocyst development after SCNT due to inhibition of 2 cell cleavage while improved the establishment of NT-ESCs through the anti-apoptotic pathway.
Matrix metalloproteinases (MMPs) have been known to affect to cell migration, proliferation, morphogenesis and apoptosis by degrading the extracellular matrix. In the previous studies, undifferentiated mouse embryonic stem cells (ESCs) were successfully proliferated inside the extracellular matrix (ECM) analog-conjugated three-dimensional (3D) poly ethylene glycol (PEG)-based hydrogel. However, there is no report about MMP secretion in ESCs, which makes it difficult to understand and explain how ESCs enlarge space and proliferate inside 3D PEG-based hydrogel constructed by crosslinkers containing MMP-specific cleavage peptide sequence. Therefore, we investigated what types of MMPs are released from undifferentiated ESCs and how extracellular signals derived from various niche conditions affect MMP expression of ESCs at the transcriptional level. Results showed that undifferentiated ESCs expressed specifically MMP2 and MMP3 mRNAs. Transcriptional up-regulation of MMP2 was caused by the 3D scaffold, and activation of integrin inside the 3D scaffold upregulated MMP2 mRNAs synergistically. Moreover, mouse embryonic fibroblasts (MEFs) on 2D matrix and 3D scaffold induced upregulation of MMP3 mRNAs, and activation of integrins through conjugation of extracellular matrix (ECM) analogs with 3D scaffold upregulated MMP3 mRNAs synergistically. These results suggest that successful proliferation of ESCs inside the 3D PEG-based hydrogel may be caused by increase of MMP2 and MMP3 expression resulting from 3D scaffold itself as well as activation of integrins inside the 3D PEG-based scaffold.
Embryonic stem cell classically cultured on feeder layer with FBS contained ES medium. Feeder-free mouse ES cell culture systems are essential to avoid the possible contamination of nonES cells. First we determined the difference between ES cell and MEF by Oct4 population. We demonstrate to culture and to induce differentiation on feeder free condition using a commercially available mouse ES cell lines.
Suspension culture is a useful tool for culturing embryonic stem (ES) cells in large-scale, but the stability of pluripotency and karyotype has to be maintained in vitro for clinical application. Therefore, we investigated whether the chromosomal abnormality of ES cells was induced in suspension culture or not. The ES cells were cultured in suspension as a form of aggregate with or without mouse embryonic fibroblasts (MEFs), and 0 or 1,000 U/ml leukemia inhibitory factor (LIF) was treated to suspended ES cells. After culturing ES cells in suspension, their karyotype, DNA content, and properties of pluripotency and differentiation were evaluated. As a result, the formation of tetraploid ES cell population was significantly increased in suspension culture in which ES cells were co-cultured with both MEFs and LIF. Tetraploid ES cell population was also generated when ES cells were cultured alone in suspension regardless of the existence of LIF. On the other hand, the formation of tetraploid ES cell population was not detected in LIF-free condition, in which MEFs were included. The origin of tetraploid ES cell population was turned out to be E14 ES cells and not MEFs by microsatellite analysis and the basic properties of them were still maintained despite ploidy-conversion to tetraploidy. Furthermore, we identified the ploidy shift from tetraploidy to near-triploidy as tetraploid ES cells were differentiated spontaneously. From these results, we demonstrated that suspension culture system could induce ploidy-conversion generating tetraploid ES cell population. Moreover, optimization of suspension culture system may make possible mass-production of ES cells.
In order to provide the basis for developing practical mouse embryonic stem cells (mESCs) culture method, how the endogenous level of self-renewal-stimulating factor genes was altered in the mESCs by different extracellular signaling was investigated in this study. For different extracellular signaling, mESCs were cultured in 2 dimension (D), 3D and integrin-stimulating 3D culture system in the presence or absence of leukemia inhibitory factor (LIF) and transcriptional level of Lif, Bmp4 and Wnt3a was evaluated in the mESCs cultured in each system. The expression of three genes was significantly increased in 3D system relative to 2D system under LIF-containing condition, while only Wnt3a expression was increased by 3D culture under LIF-free condition. Stimulation of integrin signaling in mESCs within 3D system with exogenous LIF significantly up-regulated transcriptional level of Bmp4, but did not induce transcriptional regulation of Lif and Wnt3a. In the absence of LIF inside 3D system, the expression of Lif and Bmp4 was significantly increased by integrin signaling, while it significantly decreased Wnt3a expression. Finally, the signal from exogenous LIF significantly caused increased expression of Lif in 2D system, decreased expression of Bmp4 in both 2D and 3D system, and decreased expression of Wnt3a in integrin-stimulating 3D system. From these results, we identified that endogenous expression level of self-renewal-stimulating factor genes in mESCs could be effectively regulated through artificial and proper manipulation of extracellular signaling. Moreover, synthetic 3D niche stimulating endogenous secretion of self-renewal-stimulating factors will be able to help develop growth factor-free maintenance system of mESCs.
Major characteristics of embryonic stem cells (ESCs) are sustaining of stemness and pluripotency by self-renewal. In this report, transcriptional profiles of the molecules in the developmentally important signaling pathways including Wnt, BMP4, TGF-β, RTK, Hh, Notch, and JAK/STAT signaling pathways were investigated to understand the self- renewal of mouse ESCs (mESCs), J1 line, and compared with the NIH3T3 cell line and mouse embryonic fibroblast (MEF) cells as controls. In the Wnt signaling pathway, the expression of Wnt3 was seen widely in mESCs, suggesting that the ligand may be an important regulator for self-renewal in mESCs. In the Hh signaling pathway, the expression of Gli and N-myc were observed extensively in mESCs, whereas the expression levels of in a Shh was low, suggesting that intracellular molecules may be essential for the self-renewal of mESCs. IGF-I, IGF-II, IGF-IR and IGF-IIR of RTK signaling showed a lower expression in mESCs, these molecules related to embryo development may be restrained in mESCs. The expression levels of the Delta and HES5 in Notch signaling were enriched in mESCs. The expression of the molecules related to BMP and JAK-STAT signaling pathways were similar or at a slightly lower level in mESCs compared to those in MEF and NIH3T3 cells. It is suggested that the observed differences in gene expression profiles among the signaling pathways may contribute to the self-renewal and differentiation of mESCs in a signaling-specific manner.
본 연구는 단위발생유래 생쥐 배아줄기세포(P-mES)지가 체외수정유래 생쥐 배아줄기세포 (mES)와 마찬가지로 기능성 심근세포로 체외 분화되는지를 조사하였다. 각 세포주 P-mES04와 MES03를 4일간 부유 배양하여 배아체 (EB)를 형성한 다음 4일간 DMSO를 추가적으로 처리한 뒤 젤라틴이 코팅된 배양접시에 부착시켰다(4-/4+). P-mES04와 mES03으로부터 수축성 심근세포 생성 여부를 30일간 관찰한 결과, 각각 13일(69.83%)과 22일 (61.3%)에 누적 형성율이 가장 높았다. 면역 세포화학염색 결과, 수축성을 나타내는 P-mES04 세포는 수축성 mES03 세포에서와 같이 근육 특이적인 anti-sarcomeric a-actinin 항체와 심근 특이적인 anti-cardiac troponin I 항체에 염색되는 것을 확인하였다. 또한 RT-PCR 결과, 수축성을 나타내는 P-mES04 세포는 심근특이적인 L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide 7β, GATA binding protein 4와 atrial natriuretic factor는 발현하나, 골격근 특이적인 L-type calcium channel, a1S는 발현하지 않아 웅성 성체의 심장세포와 유사한 양상을 보였다. 본 연구의 결과는 단위발생 유래 생쥐 배아 줄기세포를 배아줄기세포의 연구의 대체제로 이용할 수 있음을 보여준다.