검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using UV nanoimprint lithography(UV-NIL), 1-dimensional(1-D) pattern structures were fabricated on a hybrid mixture thin film of lanthanum oxide and a UV-curable resin. 1-D pattern on a wafer fabricated by the laser interference lithography was transferred to polydimethylsiloxane and this is used as a mold of UV-NIL process. Conducting an X-ray photoelectron spectroscopy, C 1s and La 3d spectra were analyzed, and it was confirmed that hybrid thin film was successfully deposited on glass substrate. Also, transferred pattern structure was observed by using an atomic force microscopy. Through this, it was revealed that agglomerations between 1-D pattern were increased as UV irradiation time increased and this phenomenon disrupted the quality of NIL process. Additionally, liquid crystal(LC) cells with patterned hybrid thin films were fabricated and LC alignment performances were investigated. Using the polarizing optical microscopy and the crystal rotation method, LC alignment state and pretilt angles were observed. Consequently, the uniform homogeneous LC alignment was achieved at UV irradiation time of 1min and 3min where high resolution pattern transfer was observed.
        4,000원
        3.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped Si/SiO2 substrate. Consequently, we observed an enhancement of the performance of the GNRtransistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.
        4,000원