검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Opal glass samples having different chemical compositions were synthesized and transparent glass was obtained after melting. The effects of TiO2, BaF2, and CeO2 content on the color of the opal glass were studied by observing images of the opal samples and analyzing the results via ultraviolet visible spectroscopy and color spectrometry. The aesthetic properties of the opal glass were determined by studying the transmittance of visible light in the 400 nm to 700 nm range. The basic chemical composition of opal glass was SiO2 52.9 wt%, Al2O3 12.35 wt%, Na2CO3 15.08 wt%, K2CO3 10.35 wt%, Ca3(PO)4 4.41 wt%, MgCO3 1.844 wt%, LiCO3 2.184 wt%, and TiO2 0.882 wt%. The glass samples were prepared by varying the weight percentage of TiO2, BaF2, and CeO2. The transmittance of visible light was decreased from 95 % to 75 % in the glass samples in which TiO2 content was increased from 0 to 3.882 wt%. In the blue spectrum region, as the content of TiO2 increased, the reflectance value was observed to become higher. This implies that TiO2 content induces more crystal formation and has an important effect on the optical properties of the glass. The opalescence of opal samples that contained CeO2 or BaF2 is stronger than that in the samples containing TiO2. Opal glass samples comprising TiO2 had tetragonal lattice structures; samples including CeO2 as an additive had cubic lattice structures (FCC, CeO2).
        4,000원
        2.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the purpose of improving the durability problem, translucent opal glass was fabricated as a substitute for the polycarbonate diffuser of LED lighting. Calcium phosphate was used as an opacifier of opal glass and melted in an electric furnace. The opaque effect was identified according to the change of the cooling procedure. As results, translucent opal glass was obtained by the melting of a batch with a composition of 3.8% calcium phosphate at 1550˚C for 2 hrs and then the cooling of the material in the furnace. For the cooling condition of the glass sample, HTCG (High Temperature Cooled Glass) was found to have better optical properties than LTAG (Low Temperature Annealed Glass). It had excellent optical properties for a diffuser of LED lighting, with no dazzling from direct light due to its high haze value of over 99% and low parallel transmittance value of under 1%. For the thermal properties, it had an expressed thermal expansion coefficient of 5.7×10-6/˚C and a softening point of 876˚C; it also had good thermal properties such as good thermal shock resistance and was easy to apply to the general manufacturing process in the forming of glass tubes and bulbs. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting with high heat resistance and high durability; this material is suitable as a substitute for polycarbonate diffusers.
        4,000원