These days, the Composite Slabs with Deep Deck plate was commonly used in domestic construction site, and, the application of the Slim Floor system was increased from the Enlargement and High-rise Building. But, Slim Floor system using the Deep Deck was shown safety problem caused by the deflection and local buckling in construction phase when used to more than 6m. Therefore, for solving the problem, the installation of the shores is essential. This study is realize the long span slab without shores from control the deflection through applied the pre-tensioning elements in CAP deck. In addition, by applying the pre-tensioning member as the tensile member of the CAP Deck slab, the pre-tensioning member for the shores tries to be used as the structural member. Accordingly, to determine the flexural performance of the CAP Deck slab through the pre-tensioning force in tensile member, and, the composite effect of the CAP Deck slab by the experiments.
These days, the Composite Slabs with Deep deck plate was commonly used in domestic construction site, and, the application of the Slim Floor system was increased from the Enlargement and High-rise Building. But, Slim Floor system using the deep deck was shown safety problem caused by the deflection and local buckling in construction phase when used to more than 6m. Therefore, for solving the problem, the installation of the shores is essential. This study is realize the long span slab without shores from control the deflection through applied the pre-tensioning elements in cap deck. In addition, by applying the pre-tensioning member as the tensile member of the Cap Deck composite slab, the pre-tensioning member for the shores tries to be used as the structural member. Accordingly, to determine the flexural performance of the Cap deck composite slab through the pre-tensioning force in tensile member, and, the composite effect of the cap deck composite slab by the experiments.
본 논문은 기존 강합성 교량의 내하력 향상을 목적으로 외부 긴장재의 초기 긴장력 결정 방법을 제시하였다, 외부 긴장력은 콘크리트 슬래브 재시공 전과 후에 각각 적용하였다. 활하중에 의하여 발생하는 증가 프리스트레스력을 고려한 내하율식을 제안하여 긴장재 개수와 초기 긴장력의 결정 과정을 제시하였다. 기존 강합성 교량의 내하율 향상에 적용하여 그 타당성을 입증하였다.