Background: Sleep accounts for approximately one-third of a person’s lifetime. It is a relaxing activity that relieves mental and physical fatigue. Pillows of different sizes, shapes, and materials have been designed to improve sleep quality by achieving an optimal sleep posture. Objects: This study aimed to determine which pillow provides the most comfortable and supports the head and neck during sleep, which may enhance sleep quality. Methods: Twenty-eight healthy adults (19 males and 9 females) with an average age of 29 years participated in this cross-sectional study. This experiment was conducted while the participants laid down for 5 minutes in four different pillow conditions: (1) no pillow (NP), (2) neck support foam pillow (NSFP), (3) standard microfiber filled pillow (SFP), and (4) hybrid foam pillow (HFP). The head-neck peak pressure, cranio-vertebral angle in supine (CVAs), cranio-horizontal angle in supine (CHAs), chin-sternum distance (CSD), and muscle tone of sternocleidomastoid were analyzed using one-way repeated measures analysis of variance (ANOVA). The significance level was set at p < 0.05. Results: The head-neck peak pressure was the highest in the NSFP condition, followed by the NP, SFP, and HFP conditions. The CVAs, CHAs, and CSD of the SFP were lower than those of the other pillows. Muscle tone was the highest in the NP condition, followed by the of NSFP, HFP, and SFP conditions. The participants subjective comfort level in both the supine and side-lying postures was highest in the HFP condition, followed by the SFP and NSFP conditions. Conclusion: This study can be used to establish the importance of pillow selection for highquality sleep. The results of this study, suggest that a hybrid pillow with a good supportive core and appropriate fluffiness can maintain comfort and correct cervical spine alignment during sleep.
The purpose of this study was to identify the effects of continuous muscle strengthening applied to the antagonist of the sternocleidomatoid, upper trapezius, and pectoralis major, which are the shortened muscles of forward head posture(FHP) subjects, and Evjenth-Hamberg stretching(EHS) applied to the shortened muscles on changes in pressure pain threshold(PPT). Twenty subjects were divided into the continuous antagonist strengthening( CAS) group(n=10) and the EHS group(n=10), and each group performed its respective exercise three times a week for a six week period. The results were as follows: The comparison of changes in PPT within each group before and after the treatment showed a statistically significant difference( p<.05) according to the treatment period and a statistically significant difference according to the treatment period and method(p<.05). While the comparison of the tests of between subjects effects between the groups did not show a statistically significant difference, the CAS group exhibited better effects. The above results suggest that the combined application of CAS and EHS generates better effects on changes in PPT than the single application of EHS. Given that stretching and muscle strengthening exercises even for the short research period of six weeks could change the PPT, continuous exercises and a correct postural habit for a longer period of time are likely to help prevent chronic pain and correct FHP
본 논문에서는 노심용융사고 시 관통노즐이 제거된 원자로용기 하부헤드의 구조 건전성 평가를 수행하였다. 열응력, 노심용융물의 질량 그리고 내압조건의 해석결과를 고려할 때, 하부헤드의 열응력에 의한 영향이 가장 크게 나타났다. 손상 가능성은 파손기준에 따라 평가하였으며, 등가소성변형률이 임계변형률 파손기준보다 낮은 수준으로 평가되었다. 열-구조물 연성해석 결과 하부헤드의 두께 중간층에서 항복강도보다 낮은 응력이 발생한 탄성영역 구간을 확인하였다. 내압이 커지면서 탄성영역 범위가 점차 좁아지면서 탄성영역이 내벽으로 이동하는 결과를 확인하였고, 노심용융사고 시 구조적 건전성을 만족하는 것으로 평가되었다.