양친성 PCZ-r-PEG 랜덤 공중합체를 기반으로 한 수열합성법을 통해 자가조립된 메조기공 이산화티타늄 마이크로 스피어를 합성하였다. 중합된 PCZ-r-PEG는 푸리에 변환 적외분광법(fourier transform infrared spectroscopy, FT-IR), 핵자기 공명(nuclear magnetic resonance, NMR), 젤 투과 크로마토그래피(gel permeation chromatography, GPC) 그리고 투과전자 현미경(transmission electron microscopy, TEM)을 통해 그 특성이 분석되었다. 다공성 이산화티타늄 입자는 PCZ-r-PEG, 글루코스(glucose), 물을 테트라히드로푸란(tetrahydrofuran, THF) 용액에 분산시킨 뒤 150°C, 12시간 동안 반응시켰다. 다공성 이산화티타늄 입자의 구조와 결정성 분석을 위해 주사전자현미경(scanning electron microscopy, SEM)과 엑스선 회절(X-ray diffraction, XRD)이 사용되었다.
Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as alternatives to perfluorinated sulfonic acid (PFSA) ionomers owing to their cheap production cost and low hydrogen permeability. In spite of their advantages, there are some issues to overcome such as membrane durability and relatively low proton conductivity in the low humidity range. An approach to solve these problems is to fill SPAES copolymers into porous support films (e.g., poly(tetra fluoro ethylene), PTFE). However, it is difficult to make defect-free pore-filling membranes. In this study, SPAES nanodispersion in a water-alcohol mixture is made under a modified supercritical condition and used to make highly proton conductive and chemical durable SPAES-PTFE pore-filling membranes.
최근 온실가스로 인해 기후 이상현상이 급증하면서 이산화탄소 분리 및 포집 기술에 관한 관심이집중 되고 있다. 본 연구에서는 이산화탄소 분리를 위한 고분자 분리막 재료로 극성 기체인 CO2에 대한 높은 용해선택도를 보이는 polyethylene glycol(PEG)와 폴리설폰 공중합체를 제조하였다. 공중합체의 합성 여부는 H-NMR 및 FT-IR 분석을 통해 확인되었다. 도입된 PEG 분자량에 따른 기체 분리 특성 및 열적, 물리적 특성이 평가되었다. 도입된 PEG의 분자량이 증 가할수록 이산화탄소 투과도와 CO2/N2 선택도가 증가하는 것을 확인 하였다.
Sulfonated poly(arylene ether sulfone) (SPAES)random copolymers have been perceived as alternatives to perfluorinated sulfonic acid (PFSA) ionomers owing to their cheap production cost and low hydrogen permeability. In spite of their advantages, there are some issues to overcome such as membrane durability and relatively low proton conductivity in the low humidity range. An approach to solve these problems is to fill SPAES copolymers into porous support films (e.g., poly(tetra fluoro ethylene), PTFE). However, it is difficult to make defect-free pore-filling membranes. In this study, SPAES nanodispersion in a water-alcohol mixture is made under a modified supercritical condition and used to make highly proton conductive and chemical durable SPAES-PTFE pore-filling membranes.
리튬이온 이차전지는 리튬이온이 이동하면서 전기화학적 충방전사이클을 완성하는 에너지변환장치를 의미한다. 리튬이온 이차전지는 높은 에너지밀도와 낮은 자가방전률, 상대적으로 긴 수명주기 등 다양한 장점을 갖는다. 최근 전기차 수 요증가는 고용량 리튬이온 이차전지 개발을 촉진하고 있으나 음극에서의 dendrite 형성으로 인한 전기적 단락 현상과 전지 폭 발 문제와 같은 심각한 안전문제를 야기한다. 또한, 리튬이온 이차전지 구동시 상승된 온도에서 폴리올레핀계열(예 : 폴리에 틸렌과 폴리프로필렌) 격리막의 열수축 문제가 발생한다. 이와 같이 낮은 열 안정성은 리튬이온 이차전지의 성능과 수명의 감소로 이어진다. 본 연구에서는 폴리올레핀계열 함침격리막 제조를 위한 중요한 소재로서 술폰화 폴리아릴렌에테르술폰 랜 덤 공중합체를 사용하였으며, 제조된 격리막을 이용하여 dendrite 형성과 관련된 금속이온 흡착 능력과 리튬이온전도성, 열적 내구성이 평가되었다.
술폰화 폴리아릴렌에테르술폰(SPAES) 랜덤 공중합체는 고분자 전해질 연료전지에 적용될 때 높은 수소이온전도 도, 상대적으로 낮은 생산 단가 그리고 열화학적 저항성등과 같은 장점을 갖는다. 반면, SPAES 공중합체는 가혹한 구동 조건 하에서 낮은 화학적 안정성과 치수 불안전성으로 인해 실제 연료전지 막에 직접적으로 적용하는데 어려움이 있다. 그에 타당 한 해결책은 SPAES 공중합체를 상호 연결된 기공 구조와 높은 열화학적 강도를 가지는 지지체 필름(예 : 전기방사된 폴리이 미드 지지체)에 함침시키는 것이다. 본 연구에서는 함침막 제조를 위한 이오노머로 빠른 이온 수송을 위해 높은 자유 체적을 유도하는 회전 그룹을 갖는 SPAES 공중합체를 선택하였다. 제작된 막의 실용가능성은 막 특성화를 통해 평가되었다.
Sulfonated poly(arylene ether sulfone)(SPAES) random copolymers are representative alternatives to perfluorinated sulfonic acid(PFSA) ionomers used as the state-of-the-art polymer electrolyte membranes for fuel cells. SPAES copolymers have advantages such as low hydrogen permeability, low production cost. However, it is difficult to demonstrate high electrochemical single cell performances for a long period time, since SPAES membranes have critical interfacial issues with catalyst layers containing PFSA ionomers, particularly in the repeated hydrated and dehydrated cycles. In this study, called as radiation grafting of proton conductive polymers on SPAES membranes, is tried in order to improve proton conductivity without a severe loss in dimensional stability and to reduce interfacial resistance with PFSA catalyst layers at the same time.
Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as alternatives to perfluorinated sulfonic acid ionomers used as polymer electrolyte membranes for fuel cells. SPAES copolymers are suffering from degradation under harsh fuel cell operation conditions. One solution to overcome the decomposition issue is to fill SPAES copolymers into polymeric support films (e.g., poly(tetrafluoro ethylene), PTFE) with interconnected porous structures. It is difficult to fill the SPAES copolymers dissolved in polar aprotic solvents into PTFE support films owing to their different surface energies. In this study, a SPAES nanodispersion in a water-alcohol mixture is used to make defect-free pore-filling membranes where poly(ethylene glycol) oligomers are added to induce advanced morphologies for fast proton conduction.
Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as membrane materials alternative to perfluorinated sulfonic acid (PFSA) ionomers, since they are cheap and chemically tunable when compared with PFSA. Moreover, their relatively low gas permeability, particularly to hydrogen, contributes to reduced thermal decomposition of membrane-electrode assemblies. In spite of their advantages, freestanding SPAES copolymers have critical issues associated with chemical/electrochemical durability as well as interfacial resistance with electrodes. In this study, SPAES-PTFE reinforced membranes are fabricated using consecutive membrane formation protocols, (e.g., SPAES nanodispersion in water-alcohol mixtures, spontaneous pore-filling, and solvent-assisted thermal treatment techniques) and systematically evaluated.
최근 온실가스로 인해 기후 이상현상이 급증하면서 이산화탄소 분리 및 포집기술에 관한 관심이 집중 되고 있다. 본 연구에서는 이산화탄소 분리를 위한 고분자 분리막 재료로 극성 기체인 CO2에 대한 높은 용해선택도를 보이는 polyethylene glycol(PEG)와 폴리설폰 공중합체를 제조하였다. 공중합체의 합성 여부는 H-NMR 및 FT-IR 분석을 통해 확인되었다. 도입된 PEG 분자량에 따른 기체 분리 특성 및 열적, 물리적 특성이 평가되었다. 도입된 PEG의 분자량이 증가할수록 이산화탄소 투과도와 CO2/N2 선택도가 증가하는 것을 확인 하였다.
내염소성을 갖는 염제거공정용 술폰화 폴리아릴렌 에테르 술폰 랜덤 공중합체(SPAES) thin film composite (TFC)막이 모노글라임 용매를 이용하여 제조되었다. 모노글라임은 선택층인 SPAES만을 용해시키며, 다공성 폴리술폰(예 : Udel®)층에 대해 비용해성을 지녀, TFC 제조를 위한 선택적 용매로 사용될 수 있다. 또한 개미산이나 디에틸글리콜과는 달리, 환경적으로 무해하며, 매우 낮은 끊는점을 지녔다는 점이 또 다른 장점이 될 수 있다. 다공성 Udel® 지지체 위에 코팅시, 코팅용액이 기공구조에 침투하여 유수량을 감소시키는 기공투과현상이 발생하는데, 이를 최소화하기 위해 지지체를 이소프로필알콜과 글리세린 혼합액에서 전처리 후에, 코팅-건조 공정을 통해 결함이 없는 SPAES TFC로 제조된다. 또한, SPAES 선택층의술폰화도, 고정이온의 염상태 및 물리-화학적 가교효과를 SPAES TFC막을 통한 투과거동과 관련하여 관찰하였다.
본 연구는 불소관능기인 perfluorocyclobutane (PFCB), fluorenyl, sulfonyl계 방향족 화합물을 동시에 포함하는 술폰화된 랜덤 고분자 전해질 막의 제조 및 그 특성에 관한 것이다. 이러한 고분자 전해질 막은 세단계의 합성, 즉 trifluorovinyloxy그룹을 양말단에 포함하는 단량체의 합성, 중부가반응 형태의 열중합, 그리고 chlorosulfonic acid를 이용한 후술폰화를 통하여 얻어졌다. 후술폰화 반응은 고분자 내에 포함된 fluorenyl기의 함량에 따라 일정한 몰비의 술폰화제 비율로 고정하여 진행되었으며, 이에 따라 다양한 이온교환 능력(IEC)을 가지는 고분자를 쉽게 합성할 수 있었다. 제조된 단량체 및 고분자들의 구조와 순도는 각각 FT-IR과 NMR 그리고 질량분석기를 통하여 확인되었다. 술폰화된 fluorenyl기가 많아질수록 술폰화도와 이온교환 능력이 증가하는 것을 확인할 수 있었고 그에 따른 함수율도 역시 증가하는 거동을 보였다. 술폰화된 고분자들의 이온전도도를 측정한 결과 술폰화도가 증가할수록 이온 전도도가 증가하는 것을 관찰할 수 있었다, 이렇게 제조된 전해질막 중 S-1과 S-2의 경우 다양한 온도범위(25sim80℃ 수식 이미지)에서 상용 전해질막인 Nafion-115를 능가하는 우수한 이온전도도를 나타냈다.