The long-period stacking order (LPSO) structures and stacking faults (SFs) in rapidly solidified powder metallurgy (RS P/M) Mg97Zn1Y2 alloy were investigated by high resolution transmission electron microscopy (HRTEM) observations. The 18R-type LPSO structure with a stacking sequence of ACBCBCBACACACBABAB and a period of 4.86 nm was observed in the as-extruded RS P/M Mg97Zn1Y2 alloy. After annealing at 773 K for 5 hr, the 18R-type LPSO structure was transformed to the 14H-type LPSO structure with a stacking sequence of ABABABACBCBCBC and a period of 3.64 nm. The 24R-type LPSO structure containing 24 atomic layers of ABABABABCACACACABCBCBCBC with period of 6.18 nm coexists with the 14H-type LPSO structure in the same grains. The LPSO structures contain intrinsic Type II SFs such as BCB/CABA and ABA/CBCB stacking sequences of a closely packed plane.
Mg-Zn-RE alloys had a novel lond period stacking ordered (LPO) structure. Their rapidly solidified powder metallurgy (RS P/M) alloys exhibited a combination of high strength and god ductility (tensile yield strength above 550 MPa and elongation above 5%). The LPO Mg-Zn-RE RS P/M alloys had high elevated temperature strength (tensile yield strength above 380 MPa at 473 K) and exhibited a high-strain-rate superplasticity at higher temperatures. In Japan, a national project for developing high strength LPO Mg-Zn-RE RS P/M alloys has started at 2003 for 5 years, which is founded by the Ministry of Economy, Trade and Industry (METI) of Japan. In the national project, project targets in materials performances have been achieved. The developed LPO Mg-Zn-RE RS P/M alloys exhibited higher tensile yield strength, fatigue strength and corrosion resistance than high strength aluminum alloys of extra-super-duralumin (7075-T6).
High heat-resistant Al-Fe-V-Si and Al-Fe-V-Si-X rapidly solidified powder metallurgy (RS P/M) alloys have been developed under well-controlled high purity argon gas atmosphere. The (at. %) RS P/M alloy exhibited high elevated-temperature strength exceeding 300 MPa and good ductility with elongation of 6 % at 573 K. Reduction of partical pressure in P/M processing atmosphere led to improvement in mechanical properties of the powder-consolidated alloys under elevated-temperature service conditions. Ti addition to the Al-Fe-V-Si conduced to enhancement of the strength at room temperature. The tensile yeild strength and ultimate strenght were 545 MPa and 722 MPa, respectively.