PURPOSES : The purpose of this study was to quantitatively evaluate the variability of LiDAR performance indicators, such as intensity and Number of Point Cloud(NPC), according to various environmental factors and material characteristics.
METHODS : To consider the material characteristics of road safety facilities, various materials (Reference Material(RM), reflective sheet, matte sheet, granite, plastic, and rubber) were used in a darkroom, and the performance indicators of LiDAR were repeatedly measured in terms of changes in the measurement distance, rainfall, and angle of observation.
RESULTS : In the case of standard reflective materials, the intensity measurement value decreased as the measurement distance and rainfall increased. The NPC showed a tendency to decrease as the measurement distance increased, regardless of rainfall intensity. For materials with high-intensity values, it was found that rainfall intensity and color had negligible effect on the change in intensity compared with the measurement distance. However, for materials with low-intensity values, it was found that the measurement distance, rainfall intensity, and color all had a significant effect on the change in intensity.
CONCLUSIONS : For materials with high-intensity values, it was found that rainfall and color had negligible effect on change in intensity compared with the measurement distance. However, for materials with low-intensity values, the measurement distance, rainfall, and color all had a significant effect on the change in intensity value.
Recently, the damage caused by typhoons and strong winds frequently displayed according to world climate change tends to be increasing. In the case of soundproof / windproof wall installed on the road, frequent occurrence does function for damage due to strong wind. As a result, in this study, strong wind fragility evaluation was performed to predict the degree of damage of strong winds of soundproof / windproof walls. We were conducting research focusing on the destruction mode in which the overall destruction of the sound barrier caused by the destruction of the aluminum frame occurs. Three node bending experiments were conducting for grasping the material properties of a soundproof wall aluminum frame that is currently being constructed on a road. Based on the results of this experiment, the resistance performance of the target structure was calculated, the frame breakage was selected as the limit state, and the wind load acting on the simplified soundproof wall model was measured using the Monte Carlo model model technique to measure.From now on, through the additional study, it will be necessary to proceed with a more accurate evaluation of the safety against strong windsof the soundproof wall structure using the vulnerability evaluation execution and the setting of the limit state.This study is expected to be the basic data of the study on prediction technique of wind - induced damage of soundproofing and windshield walls in the future.
선진국의 기본 요건들 중 하나는 잘 정비된 교통인프라라 할 수 있을 것이다. 이러한 교통안전시설에 대해 해외에서는 각종 교통안전시설에 대해 객관적인 상태평가를 기초로 하여 시설을 관리하는 자산관리(Asset Management)측면에서 시설을 관리하고 있는 추세이다. 이 중 도로관련 각종 안전시설은 매우 다양하며, 기능 또한 매우 중요하기 때문에 이들에 대한 설치 규정 및 지침을 제정하고 있다. 그러나 설치기준 및 지침이 있음에도 불구하고, 각 시설이 기준에 부합되게 설치되지 않아 오히려 도로이용자에게 불편함 뿐 아니라, 안전에도 악영향을 끼치고 있다. 본 연구에서는 다양한 도로안전시설 중 도로의 설계(운영)속도 및 기하구조에 따라 설치 간격 및 높이들이 규정화 되어있는 시설에 대해 라인스캔카메라를 이용, 이를 신속하게 측정 가능한 영상분석 모델을 개발하였다. 또한 이를 체계적으로 분석할 수 있는 프로그램을 개발하여 현장에 적용하였으며, 그 결과 매우 정확하게 시설의 크기와 설치간격을 신속하게 측정할 수 있었다.