수중 방파제 피복작업은 사석의 유실을 방지하기 위해 방파제 겉면에 2-3ton의 돌을 쌓는 작업으로 현재 잠수부에 의해 수작업으로 시공을 하고 있다. 수중에서의 사야문제와 작업의 특성상 잠수부의 육감에 의해 공사가 시행되며 작업 과정에서 산업재해가 빈번히 발생한다. 이러한 문제점을 해결하기 위해 본 논문에서는 수중 방파제 피복작업을 위한 수중항만공사 로봇을 개발하였다. 로봇의 유압 실린더 제어를 위해 위치 센서가 필요한데 기존 센서는 구동축에 부착되어 방수가 어렵고 건설현장에서 사용하기에는 내구성이 좋지 못하다. 하지만 압력센서는 유압라인상의 임의의 위치에 부착이 가능하므로 방수박스 내부에 설치할 수 있어 방수가 용이하고 내구성을 높일 수 있다. 따라서 본 논문에서는 압력센서를 이용하여 수중항만공사 로봇의 유압 실린더 변위를 간접적으로 측정하는 관측기를 설명한다.
This paper describes efficient flight control algorithms for building a reconfigurable ad-hoc wireless sensor networks between nodes on the ground and airborne nodes mounted on autonomous vehicles to increase the operational range of an aerial robot or the communication connectivity. Two autonomous flight control algorithms based on adaptive gradient climbing approach are developed to steer the aerial vehicles to reach optimal locations for the maximum communication throughputs in the airborne sensor networks. The first autonomous vehicle control algorithm is presented for seeking the source of a scalar signal by directly using the extremum-seeking based forward surge control approach with no position information of the aerial vehicle. The second flight control algorithm is developed with the angular rate command by integrating an adaptive gradient climbing technique which uses an on-line gradient estimator to identify the derivative of a performance cost function. They incorporate the network performance into the feedback path to mitigate interference and noise. A communication propagation model is used to predict the link quality of the communication connectivity between distributed nodes. Simulation study is conducted to evaluate the effectiveness of the proposed reconfigurable airborne wireless networking control algorithms.
In order to produce a convenient robot for the aged and the lower limb disabled, it is needed for the research detecting implicit walking intention and controlling robot by a user's intention. In this study, we developed sensor module system to control the walking- assist robot using FSR sensor and tilt sensor, and analyzed the signals being acquired from two sensors. The sensor module system consisted of the assist device control unit, communication unit by wire/wireless, information collection unit, information operation unit, and information processing PC which handles integrated processing of assist device control. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We could recognize the more detailed user's walking intention such as 'start walking', ''start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.
This paper proposes a low-complexity indoor localization method of mobile robot under the dynamic environment by fusing the landmark image information from an ordinary camera and the distance information from sensor nodes in an indoor environment, which is based on sensor network. Basically, the sensor network provides an effective method for the mobile robot to adapt to environmental changes and guides it across a geographical network area. To enhance the performance of localization, we used an ordinary CCD camera and the artificial landmarks, which are devised for self-localization. Experimental results show that the real-time localization of mobile robot can be achieved with robustness and accurateness using the proposed localization method.
We propose and develop Home Security robot system based on Sensor Network (HSSN) configured by sensor nodes including radio frequency (RF), ultrasonic, temperature, light and sound sensors. Our system can acknowledge security alarm events that are acquired by sensor nodes and relayed in the hop-by-hop transmission way. There are sensor network, Home Security Mobile Robot (HSMR) and Home Server(HS) in this system. In the experimental results of this system, we presented that our system has more enhanced performance of response to emergency context and more speedy and accurate path planning to target position for arriving an alarm zone with obstacle avoidance and acquiring the context-aware information.
Though the final goal of mobile robot navigation is to be autonomous, operators intelligent and skillful decisions are necessary when there are many scattered obstacles. There are several limitations even in the camera-based tele-operation of a mobile robot, which is very popular for the mobile robot navigation. For examples, shadowed and curved areas acnnot be viewed using a narrow view-angle camera, especially in bad weather such as on snowy or rainy days. Therefore, it is necessary to have other sensory information for reliable tele-operations. In this paper, sixteen ultrasonic sensors are attached around a mobile robot in a ring pattern to measure the distances to obstacles. Acollision vector is introduced in this paper as a new tool for obstacle avoidance, which is defined as a normal vector from an obstacle to the mobile robot. Based on this collision vector, a virtual reflection force is generated to avoid the obstacles and then the reflection force is transferred to an operator who is holding a joystick to control the mobile robot. Relying on the reflection force, the operator can control the mobile robot more smoothly and safely. For this bi-directional tele-operation, a master joystick system using a hall sensor was designed to resolve the existence of nonlinear sections, which are usual for a general joystick with two motors and potentiometers. Finally, the efficiency of a force reflection joystick is verified through the comparison of two vision-based tele-operation experiments, with and without force reflection.