본 연구는 신간척지에서 적정 완전낙수시기를 구명함으로써 안정적인 수량확보 및 미질향상을 하기 위하여 완전낙수시기를 출수 후 25일부터 50일까지 5일 간격으로 처리하여 신간척지인 새만금 계화포장에서 수행한 내용을 요약하면 다음과 같다. 1. 2010년 출수 후 적산온도는 평년대비 수확기를 기준으로 100℃ 정도 높았고 강수량은 약간 적었다. 2. 평균 주당수수는 16.5개 이었고, 수당입수는 88개 이었다. 3. 출수 후 40~50일 낙수처리가 출수 후 25~35 일 낙수처리보다 등숙비율은 3% 정도 높았고 현미천립중은 0.6 g정도 무거웠다. 4. 쌀수량은 출수 후 25일 낙수 대비 30~35 일 낙수에서는 유의차가 없었고, 40~50일 낙수에서는 7~8% 증수하였다. 5. 완전립비율은 출수 후 35 일 낙수에서 높았고, 단백질 함량은 조기 낙수할수록 낮았다. 6. 토양수분과 토양경도는 고도의 부의상관이 있었고, 완전낙수후 시간이 경과할수록 토양중 EC는 높아졌다. 이상의 결과로 볼 때, 신간척지에서 안정적인 쌀 수량 확보를 위한 적정 완전낙수시기는 출수 후 40~50 일이라고 판단된다.
Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.