The objective of this study was to determine the effect of dietary oils on the levels of the γ-linolenic acid in chicken meat lipids. Three hundred ten five, 1-d old, male, Ross strain, broiler chicks were fed for 35 d to compare diets containing evening primrose oil(EPO) and hemp seed oil(HO) to a control diet. Fatty acid composition of lipid from chicken skin, thigh and breast muscle were determined at the end of the trial. The level of γ-linolenic acid of lipids from chicken meat fed diets containing EPO or HO was significantly higher than that of the control group(p〈0.05). The level of γ-linolenic acid of lipids from chicken skin was highest in the group, which had been fed the EPO 0.85%, followed in order by EPO 0.7%, 0.5%, EPO mixed oil, HO and HO mixed oil. There was a significant difference in the level of γ-linolenic acid of chicken skin between the control and treatment groups(p〈0.05). The level of γ-linolenic acid of lipids from chicken thigh muscle was also similar to skin, and significantly higher than that of the control group(p〈0.05). The level of γ-linolenic acid of lipids from chicken breast muscle was highest in the group, which had been fed the EPO 0.5%, followed in order by EPO 0.7%, 0.85%, HO 0.5% and HO mixed oil. There was a significant difference in the level of γ-linolenic acid of chicken breast muscle between the control and treatment groups(p〈0.05).
This study was conducted to investigate the influence of drought stress during the pod developing and seed filling stage on source-sink relationships of soybean (Glycine max). Drought treatments were imposed by withholding water at the full-pod stage, 19 days after flowering, and then limited watering was relieved at 15 days after the initiation of drought treatment. Soybean seed yield was reduced by 39% mainly due to decreased pod number under drought stress, but the 100-seed weight was relatively less reduced. In spite of the 15-day drought during the full-pod stage, soybean produced good seeds showing similar l00-seed weight, protein, starch and soluble sugar content to those from the well-watered. Although drought during the full-pod stage caused source limitations; i.e. accelerated leaf senescence and reduced leaf soluble sugars, it did not cause limitations of other source characteristics such as SGR and leaf starch level. This is because the reduction in size of sinks, such as pod and seed abortions compensated for source limitations, resulting in balanced source-sink as expressed by LAR and the ratio of leaf area to seed dry weight. Drought stress during the pod developing and seed filling stage did not disrupt the source-sink balance