Highly crosslinked micron-size monodispersed PMMA/PDVB and PS/PDVB particles were prepared using seeded multi-stage emulsion polymerization. PMMA and PS seed particles were synthesized by seeded multi-stage emulsion polymerization and soap-free emulsion polymerization. Then PMMA/PDVB and PS/PDVB particles were obtained using semi-batch type emulsion polymerized using divinyl benzene as a cross-linkable monomer in the presence of seed particles. PMMA particles with size of ca. 730 nm and polydispersity of 1.03 were successfully prepared in this experiment. PS particles with size of ca. 1.5 μm and polydispersity of 1.01 were prepared in this experiment. Highly crosslinked PS/PDVB particles with size of ca. 1.3 μm and polydispersity of 1.00 were obtained.
In this study, various model composite latexes were synthesized using n-butyl acrylate and methyl methacrylate as comonomers by seeded multi-staged emulsion polymerization. Monodispersed model composite latex particles with size of 190 nm and polydispersity index of 1.05, which have various morphology including random copolymer particle, soft-core/hard-shell particle, hard-core/soft shell particle, and gradient-type copolymer particle, homopolymers particles were prepared. The designed morphology of model composite particles were confirmed.
As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of 180~200 nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.