In this study, quantum dot-sensitized solar cells (QDSSC) using CdSe/ZnS quantum dots (QD) of various sizes with green, yellow, and red colors are developed. Quantum dots, depending their different sizes, have advantages of absorbing light of various wavelengths. This absorption of light of various wavelengths increases the photocurrent production of solar cells. The absorption and emission peaks and excellent photochemical properties of the synthesized quantum dots are confirmed through UV-visible and photoluminescence (PL) analysis. In TEM analysis, the average sizes of individual green, yellow, and red quantum dots are shown to be 5 nm, 6 nm, and 8 nm. The J-V curves of QDSSC for one type of QD show a current density of 1.7 mA/cm2 and an open-circuit voltage of 0.49 V, while QDSSC using three type of QDs shows improved electrical characteristics of 5.52 mA/cm2 and 0.52 V. As a result, the photoelectric conversion efficiency of QDSSC using one type of QD is as low as 0.53 %, but QDSSC using three type of QDs has a measured efficiency of 1.4 %.
In commercial solar cells, the pattern of the front electrode is critical to effectively assemble the photo generated current. The power loss in solar cells caused by the front electrode was categorized as four types. First, losses due to the metallic resistance of the electrode. Second, losses due to the contact resistance of the electrode and emitter. Third, losses due to the emitter resistance when current flows through the emitter. Fourth, losses due to the shading effect of the front metal electrode, which has a high reflectance. In this paper, optimizing the number of finger on a 4 ´ 4 solar cell is demonstrated with known theory. We compared the short circuit current density and fill factor to evaluate the power loss from the front metal contact calculation result. By experiment, the short circuit current density(Jsc), taken in each pattern as 37.61, 37.53, and 37.38 mA/ cm2 decreased as the number of fingers increased. The fill factor(FF), measured in each pattern as 0.7745, 0.7782 and 0.7843 increased as number of fingers increased. The results suggested that the efficiency(Eff) was measured in each pattern as 17.51, 17.81, and 17.84 %. Throughout this study, the short-circuit current densities(Jsc) and fill factor(FF) varied according to the number of fingers in the front metal pattern. The effects on the efficiency of the two factors were also investigated.
For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately 60˚. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/cm2. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.