검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2021.06 구독 인증기관 무료, 개인회원 유료
        A ship’s position as determined by the observation of celestial bodies is a traditional method with important advantages, such as reliability, independence and a low cost. Global satellite navigation systems, with many outstanding advantages in terms of accuracy and continuity, have become the main method of ship positioning in offshore navigation. Ship positioning using celestial body observation is still a backup method in the event of unusual incidents. Currently, during the daytime, it is only possible to apply the celestial navigation method to determine the ship’s position by observing the altitude of the sun. In order to reduce geometrical errors, this traditional method requires time for a certain change of the azimuth of the sun and therefore depends much on estimated errors and the effects of external conditions. Moreover, the basic requirement of the backup method is to provide a ship position quickly during offshore navigation, without the position being determined by a global satellite positioning system. To overcome the above limitations, the paper proposes a new approach to determine a ship's position by simultaneously observing the altitude and azimuth of the sun. A program for calculating the position of a ship with high reliability and applicability based on the new algorithm is also devised and shown to be highly effective in practice.
        4,000원
        2.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The KVN(Korean VLBI Network)-style simultaneous multi-frequency receiving mode is demonstrated to be promising for mm-VLBI observations. Recently, other Very long baseline interferometry (VLBI) facilities all over the globe start to implement compatible optics systems. Simultaneous dual/multi-frequency VLBI observations at mm wavelengths with international baselines are thus possible. In this paper, we present the results from the first successful simultaneous 22/43 GHz dualfrequency observation with KaVA(KVN and VERA array), including images and astrometric results. Our analysis shows that the newly implemented simultaneous receiving system has brought a significant extension of the coherence time of the 43 GHz visibility phases along the international baselines. The astrometric results obtained with KaVA are consistent with those obtained with the independent analysis of the KVN data. Our results thus confirm the good performance of the simultaneous receiving systems for the non-KVN stations. Future simultaneous observations with more global stations bring even higher sensitivity and micro-arcsecond level astrometric measurements of the targets.
        4,000원