Glass was fabricated using refused coal ore obtained from the Dogye coal mine in Samcheok. We additionally used soda ash and calcium carbonate to make a glass with the chemical composition of soda-lime glass, and we also used white, brown, and green glass cullet to make various kinds of colored glass. Transparent glass was fabricated by melting batch materials including refused coal ore at 1550˚C for 1 hr in an electrical furnace. The light transmittance and color chromaticity were measured by a UV/VIS/NIR spectrometer. Transparent glass with a light transmittance of over 80% was fabricated using normal refused coal ore and white glass cullet. Various kinds of colored glass with a light transmittance of 30-80% were fabricated using refused coal ore and brown or green glass cullet. The light transmittance of the mixed color glass samples, fabricated using normal refused coal ore and brown glass cullet and green glass cullet, indicated 30-47%, a relatively low value, in the condition of a cullet ratio of 20-50%. The characteristics of the color chromaticity of the glass samples were indicated in a chromaticity diagram by x-coordinates, y-coordinates, Y (lightness). The values of x-coordinates and y-coordinates were moved with a regular directional property according to the kind and amount of glass cullet. Therefore, we concluded that refused coal ore can be used for raw materials of color glass products like art glass and glass tile.
본 연구에서는 경도 이온의 화학적 침전을 위하여 지하수에 과량의 Lime-Soda ash를 주입하여 플럭(floc)을 형성한 다음 침전과정을 십자흐름(Crossflow) 방식의 관형 세라믹 분리막을 이용한 한외여과(UF) 공정으로 대체하였다. 그 결과 두유 포장팩 세척수로 사용하고 있는 지하수의 총경도를 10 mg/L as CaCO3 이하로 감소시킬 수 있었다. 한편, TMP(Trans-membrane pressure) 및 유량 변화 실험에서 투과선속(Permeate flux, J) 및 무차원한 투과선속(J/JO) 변화를 조사하여, TMP 및 유량이 무기물로 형성된 응집 플럭에 의한 막오염에 미치는 영향을 알아보았다. 그 결과, 본 실험 범위에서 TMP 및 유량 변화가 막오염과 총경도 제거율에 미치는 영향은 거의 없었다.
The advanced method for CO2capture is currently one of the most important environmental issues in worldwide and it is therefore necessary to have available technologies, which minimize the discharge of CO2 including Carbon-14 from nuclear facilities into the atmosphere. A key aspect of this work is to provide the technically principal data required to improve a CO2 removal system for the utilization of regenerative sorbent use, specifically include suggestions regarding its modified column design (parallel dual-bed assembly), stop-restart operation and the economic feasibility of sorbent use. The removal performance of soda lime and the effects of relative humidity (RH) and packing bed-depth (BD) on CO2 removal were investigated. In a single-bed, it revealed that the utilization of soda lime for CO2 removal at line velocity of 13 cm/sec and bed depth of 12 cm increased with the increased relative humidity up to 85%. However, in the parallel dual-bed assembly applied with the stop-restart operation, a maximum utilization rate of soda lime for CO2 removal was obtained even at 55% of RH and 8 cm of BD, specifically the utilization rate of soda lime by using this CO2 removal assembly was about two-fold superior to that in a single-bed.
본 연구는 포졸란 재료인 LCD 유리분말과 소다석회 유리분말을 혼입하였을 경우 시멘트 복합체의 내구성에 미치는 영향을 비교, 분석하기 위함이다. 연구결과에 의하면, LCD 유리분말은 소다석회 유리분말 및 플라이애시보다 알칼리- 실리카 반응 (ASR) 및 염소이온 침투 저감에 효과적인 것으로 확인되었다.