다양한 산업분야에서 중금속의 사용이 증가할수록, 중금속으로 인한 환경오염과 생물학적 위해성에 대한 우려의 목소리가 커지고 있다. 통계 지수는 배경농도 값과의 비교를 통해 중금속 오염농도를 정규화 시킴으로써 토양 오염의 정도를 수치화하고, 단계 별로 오염 정도를 판단 할 수 있어 많이 사용된다. 본 연구에서는 농축인자(Enrichment factor, EF), 축적 계수(accumulation index), 잠재적 생물학적 위험 지표(potential ecological risk index)등을 이용하여 중공업 근처 토양 내 중금속 오염가능성을 평가하였다. 연구결과, 중금속의 오염 정도는 정부 가이드라인에 비하여 낮은 수준이었으나, 특정 위치에서 아연, 구리, 납 등의 중금속 오염이 관찰 되었다. 농축인자, 축적계수, 생물학적 위험 지표를 통해 일부 토양 내 중금속 오염이 우려할 수준이며, 주변에 존재하는 인위적 오염원에 의한 오염가능성이 있음을 확인하였다. 연구대상지의 추가 시료채취 및 추정되는 오염원의 시료 확보 후, 동위원소 분석 및 x-ray 기반 분석을 통해 오염원 추적연구가 필요할 것으로 판단된다.
The investigation was initiated with data from 27 abandoned mines along with 12 locations in Kyongbuk abandoned mines. The analyses for soil pollution by heavy metal pollutants were conducted by using correlation analysis, cluster analysis, and principal component analysis. The correlation analysis indicated that Ni and pH were highly correlated compared to those of other heavy metal ions. The principal component analyses showed that the heavy metal ions might be classified into two catagories, such as antropogenic and lithogenic components. The cluster analysis was also clearly divided by two groups. The respective two groups might be Pb-Zn-Cd-Cu and As-Hg-Ni.
본 연구는 가축분뇨의 처리형태별 시용수준에 따른 목초의 생산성과 질소의 이용효율 및 질소의 용탈에 의한 환경오염에 미치는 영향을 파악하기 위하여 화학비료, 톱밥발효돈분, 무톱밥발효돈분 및 액상발효돈분을 100, 200, 400kgN/ha 수준으로 시용했을 때의 연구 결과는 다음과 같다. 1. 화학비료와 분뇨의 처리형태별 목초의 생산성과 사료가치 및 N 생산량에 미치는 시용효과는 화학비료 > 액상발효돈분 > 무톱밥발효돈분 > 톱밥발효돈분의 순이었다(건물수
본 연구는 온배수가 인근 소하천의 수질과 농경지내 오염성분함량 변동에 미치는 영향을 구명하고 이에 대한 대책을 수립하는데 활용하고자 1997년 1월부터 1998년 9월 사이에 수행되었다. 온배수 유입으로 인근 소하천 물 중의 PO43-, SO42-, Cl-, NH4 -N, Ca2+, Na+ 및 COD성분함량은 농업용수 기준보다 낮았으며 유거 거리가 길어질수록 이들 농도는 더욱 낮아졌다. 유출된 온배수 중 SO42
Trains have been a major means of transport in Korea during these past decades. However, train facilities such as stations and repair shops are contaminated with organic and inorganic substances. There is a high probability of train facility contamination with polyaromatic hydrocarbons (PAHs). This study evaluated the PAH and heavy metal contamination of soil near railroads in the Kyungpook area. A total of 18 soil samples were collected from the railroads and analyzed for 16 PAHs and 6 heavy metal species. The contamination level of the top soil was found to be slightly higher than that of the subsoil for contamination with PAHs. The ratio of carcinogenic PAH concentration to the total PAH concentration was relatively high, with a maximum of 0.9. The toxicity equivalent (TEQ) of the PAHs were 500.6 ng/kg in the topsoil and 355.5 ng/kg in the subsoil. The ratio of low molecular PAHs (LPAHs) to high molecular PAHs (LPAHs) ranged from 6.7 to 29.5; this shows that contamination is primarily due to combustion of fuel rather than due to petroleum. The ratio of phenanthrene to anthracene and the ratio of fluoranthene to pyrene also show that contamination occurred due to combustion for transportation. The heavy metal contamination level was lower than the Korean standard, but higher than the background concentration; this indicates that the soil was affected by the operation of the railways.
Pollution characteristics of leachate and underground soil of the two landfill sites were investigated. Domestic wastes were dumped in the two adjacent landfill sites. Only small portion of S landfill site was filled with domestic wastes at the first stage of dumping, and most portion of the site was filled with construction wastes. However Y landfill site was filled with mostly domestic wastes.
Higher concentrations of organic pollutants including VOCs were measured in Y landfill site leachate than in S landfill site.
Underground soils of the two landfill sites were analyzed by the two kinds of leaching methods, KEP (Korean Extraction process) and Acid Digestion. Underground soils of the both landfill sites were not polluted by leachates. Underground soils of the two were composed of fine silty material. Thus it is found that fine silty soil layer of the sea shore may be used as a landfill site.
Environmental problems caused by certain geologic conditions include pollution of soil by heavy metal, acidization of soils, acid mine drainage, ground-water pollution, and natural radioactivity, as well as geological hazards such as landslide and subsidence. The acid mine drainage contains large amount of heavy metals and, therefore, cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllite(Napseok) deposits. The sulfide-bearing pyrophyllite ores, alteration zones, and mine tailings of pyrophyllite deposits produce acid mine drainage by the oxidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of their lower buffering capacity to acid solution.
The pHs of mine water and nearby stream water of pyrophyllite deposits are 2.1∼3.7, which are strongly acidic and much lower than that (6.2∼7.2) of upstream water and than that (6.8∼7.6) of the stream water derived from the non-mineralized area. This study reveals that this acid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drainage is diluted with abundant non-contaminated river water. This suggests that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction.
The heavy metals such as Pb, Zn, Cu, Cd, Ni, Mn and Fe are enriched in the mine water of low pH, and their contents decrease as the pH of mine water increases because of the influx of fresh stream water. Soils of the pyrophyllite deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Hoidong water reservoir without any purification process. To protect the water of Hoidong reservoir, the acid mine drainage should be treated with a proper purification process.
The present study was performed to elucidate the distribution of protozoans according to the actual conditions of soil pollution around Ulsan industrial complexes, Korea. Samples were collected from the top-soils of 13 localities in eight times during the period from 16 April 1994 to 14 January 1995. As a result of this study, total 11 species of hypotrichous ciliated protozoa were identified and analyzed. These hypotrichs are 6 species of stichotrichine hyporichs (Keronopsis sp., Pseudourostyla sp., Holosticha sylvatica, Holosticha multistylata, Holosticha sp. and Paruroleptus sp.) and 5 species of sporadotrichine hypotrichs (Oxytricha sp., Steinia sp., Histriculus cavicola, Hemisincirra sp. and Gonostomum of affine). Of these 11 species, 4 species (Keronopsis sp., Pseudourostyla sp., Holosticha sp. and Hemisincirra sp.) are reported for the first time from Korea. All the sampling localities could be grouped in three zones by the cluster analysis with the abundance and distribution of protozoans. This result is approximately coincide with the zonation by the concentration of heavy metals.