In this paper, we investigate asteroseismic scaling-relations of evolved stars in star clusters observed by Kepler/K2, aiming to address the issue of whether observed stellar oscillations are influenced by environmental factors, as there are interesting phenomena relating to the stellar pulsations observed in star clusters. Specifically, we compare statistical properties of distributions including Δν, νmax, HGauss, δνenv, and δν02 derived from red giant branch (RGB) and red clump (RC) stars in two pairs of star clusters: NGC 2682 - NGC 6819 and NGC 1817 - NGC 6811. We have found that the slopes of relations between νmax and Δν and between HGauss and νmax associated with RC stars in the more compact star clusters, NGC 2682 and NGC 1817, are in common less steep compared with those for NGC 6819 and NGC 6811. It is also found that the slopes of the relation between δνenv and νmax from RC stars in the more compact star clusters are in common steeper compared with those for the others. For the relation between δν02 and Δν obtained from RGB stars, the slope resulting from NGC 2682 and NGC 6819 is indistinguishable. The Kolmogorov–Smirnov tests conducted on RC stars in the pairs of NGC 2682 and NGC 6819, as well as NGC 1817 and NGC 6811, indicate that all the seismic quantities considered in this paper are drawn from different distributions. We conclude, therefore, that the properties of star clusters should be considered when asteroseismic data obtained from stars within star clusters are interpreted.
We conducted a survey of open clusters within 1 kpc from the Sun using the astrometric and photometric data of the Gaia Data Release 2. We found 655 cluster candidates by visual inspection of the stellar distributions in proper motion space and spatial distributions in l b space. All of the 655 cluster candidates have a well dened main-sequence except for two candidates if we consider that the main sequence of very young clusters is somewhat broad due to dierential extinction. Cross-matching of our 653 open clusters with known open clusters in various catalogs resulted in 207 new open clusters. We present the physical properties of the newly discovered open clusters. The majority of the newly discovered open clusters are of young to intermediate age and have less than 50 member stars.
The bulk motion of star clusters can be determined after careful membership analysis using parametric or non-parametric approaches. This study aims to implement non-parametric membership analysis based on Binned Kernel Density Estimators which takes into account measurements errors (simply called BKDEe) to determine the average proper motion of each cluster. This method is applied to 178 selected star clusters with angular diameters less than 20 arcminutes. Proper motion data from UCAC4 are used for membership determination. Non-parametric analysis using BKDE-e successfully determined the average proper motion of 129 clusters, with good accuracy. Compared to COCD and NCOVOCC, there are 79 clusters with less than 3σ difference. Moreover, we are able to analyse the distribution of the member stars in vector point diagrams which is not always a normal distribution.