이미지 인식에 특화된 CNN (Convolutional Neural Network) 기반의 딥러닝 기법은 영상의 항목별 분류가 필요한 다양한 연구에 적용되고 있다. 본 연구는 건물, 도로, 논, 밭, 산림, 나지의 6가지 항목을 산림복원 대상 후보지로 정의하고 CNN 기반의 산림복원 대상 후보지 추출 및 분류의 최적 방법론을 탐색하였다. 6,640개의 데이터셋을 75:25의 비율로 훈련(4,980개) 및 검증(1,660개)로 구분하여 구축하고 학습에 활용하였다. 모델별 정확도는 픽셀정확도(PA), 평균 교차 겹침 결합(Mean IoU)을 이용하여 평가하였다. 픽셀정확도는 90.6%, 평균 교차 겹침 결합은 80.8%로 산정되어 Inception-Resnet-v2 모델이 세 모델 중 가장 산림복원 대상 후보지 추출에 뛰어난 정확도를 보였다. 이 결과는 기존의 산림복원 대상 후보지 현장조사 혹은 항공사진을 활용한 조사에 비해 시공간적 이점을 가지며, 향후 산림복원 대상지 선정 자료로 적용 가능성이 있다고 판단된다.