The investigation of the space environment requires the use of experimental and theoretical tools and resources in order to perform the research task. Understanding of these research tools is imperative for proper interpretation of the results. In this paper, we discuss on research tools that are widely used in the field of aeronomy; Fabry-Perot interferometer and Michelson interferometer. These instruments have been used extensively as passive optical devices, spectrally monitoring the natural atmospheric emissions (airglow). This function has made both instruments valuable tools in upper atmospheric studies since they provide the ability to determine the dynamic and thermodynamic properties of the upper atmosphere by monitoring naturally-occuring emission.
We present for the first time the characteristics of upper atmospheric horizontal winds over the Korean Peninsula. Winds and their variability are derived using four-year measurements by the Korea Astronomy and Space Science Institute (KASI) meteor radar. A general characteristic of zonal and meridional winds is that they exhibit distinct diurnal and seasonal variations. Their changes indicate sometimes similar or sometimes different periodicities. Both winds are characterized by either semi-diurnal tides (12 hour period) and/or diurnal tides (24 hour period) from 80–100 km. In terms of annual change, the annual variation is the strongest component in both winds, but semi-annual and ter-annual variations are only detected in zonal winds.
The summer polar lower thermosphere (90–100 km) has an interesting connection to meteors, adjacent to the mesopause region attaining the lowest temperature in summer. Meteors supply condensation nuclei for charged ice particles causing polar mesospheric summer echoes (PMSE). We report the observation of meteor trail with nearly horizontal transit at high speed (20–50 km/s), and at last with re-enhanced echo power followed by diffusive echoes. Changes in phase difference between radar receivers aligned in meridional and zonal directions are used to determine variations in horizontal displacements and speeds with respect to time by taking advantage of radar interferometric analysis. The actual transit of echo target is observed along the straight pathway vertically and horizontally extended as much as a distance of at least 24 km and at most 29 km. The meteor trail initially has a signature similar to ‘head echoes’, with travel speeds from 20 – 50 km/s. It subsequently transforms into a different type of echo target including specular echo and then finally the power reenhanced. The reenhancement of echo power is followed by fume-like diffusive echoes, indicating sudden release of plasma as like explosive process probably involved. We discuss a possible role of meteor-triggered secondary plasma trail, such as fireball embedded with electrical discharge that continuously varies the power and transit speed.