간행물

천문학논총 KCI 등재 Publications of the Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

Volume 15 S2 (2000년 12월) 9

1.
2000.12 구독 인증기관 무료, 개인회원 유료
Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.
4,500원
2.
2000.12 구독 인증기관 무료, 개인회원 유료
The geomagnetic measurements on the Korean Territory began in 1918 in the Incheon (Zinsen in Japanese pronunciation) Observatory of which the annual means of total magnetic field intensity, declination, and inclination still remain for 1918-1944. From 1970s, the National Geography Institute (NGI) and the Radio Research Laboratory (RRL) have tried independently to measure the geomagnetic field continuously. The RRL as the result of such efforts has installed 3 geomagnetic observatories, the first in Icheon and the second in Yongin in 1996, and the third in Jeju in 1997. From 1992, the Korea Institute of Geology, Mining and Materials (KIGAM) has tried also to measure the geomagnetism and as the result they have installed 2 geomagnetic observatories, one in Daejeon in 1998 and the other in Gyeongju in 2000. Nowadays, the RRL and the KIGAM collect the measured data into their own main computers by telecommunication in real time. The two institutions will cooperate in near future to link the two geomagnetic data bases so that the whole set of geomagnetic data measured on Korean Territory could be provided to the end users in Korea.
4,000원
3.
2000.12 구독 인증기관 무료, 개인회원 유료
The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.
4,000원
4.
2000.12 구독 인증기관 무료, 개인회원 유료
The investigation of the space environment requires the use of experimental and theoretical tools and resources in order to perform the research task. Understanding of these research tools is imperative for proper interpretation of the results. In this paper, we discuss on research tools that are widely used in the field of aeronomy; Fabry-Perot interferometer and Michelson interferometer. These instruments have been used extensively as passive optical devices, spectrally monitoring the natural atmospheric emissions (airglow). This function has made both instruments valuable tools in upper atmospheric studies since they provide the ability to determine the dynamic and thermodynamic properties of the upper atmosphere by monitoring naturally-occuring emission.
4,000원
5.
2000.12 구독 인증기관 무료, 개인회원 유료
Two different types of plasma probes have been developed and are currently in operation on board the KOMPSAT-l. One is the cylindrical Langmuir Probe (LP) that measures the electron density and temperature from its current-voltage characteristics in thermal plasmas, and the other is the Electron Temperature Sensor (ETS) which directly gives the information of the ambient electron temperatures. These plasma probes provide the electron properties of the local nighttime ionosphere at the KOMPSAT-l altitudes. In this paper we briefly describe the probes and the initial results obtained from these probes since the beginning of their normal operation in April, 2000.
4,000원
6.
2000.12 구독 인증기관 무료, 개인회원 유료
Four plasma instruments are currently under development for KAISTSAT-4 (K-4) which is scheduled for launch in 2002. They are the Solid-State Telescope, Electro-Static Analyzer, Langmuir Probe, and the Scientific Magnetometer, that will respectively allow in-situ detection of high energy and low energy components of auroral particles, ionospheric thermal electrons, and magnetic field disturbances. These instruments, together with the Far-ultraviolet IMaging Spectrograph, will provide micro-scale physics of Earth's polar ionosphere with detailed spectral information that has not been previously achieved with other space missions. In this paper, we review the concept of the four space plasma instruments as well as the anticipated results from the instruments.
4,000원
7.
2000.12 구독 인증기관 무료, 개인회원 유료
We investigate the critical issue on how the BBF (bursty bulk flow) is related to the substorm current wedge formation. Observationally, after analysing data sets from Geotail spacecraft at near tail and many ground magnetic observatories for 9 months period of 1996, we find three BBF events that clearly occurred at the center of the wedge with region I type FAC (field-aligned current), and two other BBF events that were seen outside the wedge sector. Theoretically, we suggest that the substorm current wedge generation by BBF is most likely when the J⊥ · ∇B contribution is dominant in the well-known MHD JII expression (Vasyliunaus, 1984) or when the divergence of the cross-tail current carried by the particle's gradient/curvature drift is predominantly sufficient at the moment of the BBF arrival at near tail.
3,000원
8.
2000.12 구독 인증기관 무료, 개인회원 유료
It is realized that the extraterrestrial matter is in ionized state, plasma, so the matter of this kind behaves as not expected because of its sensitiveness to electric and magnetic fields and its ability to carry electric currents. This kind of subtle change can be observed by an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite, and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control and the Earth's magnetic field measurements for the scientific purpose. In this paper, we present the preliminary design and the test results of the two onboard magnetometers of KARl's (Korea Aerospace Research Institute) sounding rocket, KSR­III, which will be launched during the period of 2001-02. The KSR-III magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer) for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer) for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector fields with the IGRF (International Geomagnetic Reference Field). The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.
4,000원
9.
2000.12 구독 인증기관 무료, 개인회원 유료
We have investigated the numerical methods to calculate model atmosphere for the analysis of spectral lines emitted from the sun and stars. Basic equations used in our calculations are radiative transfer, statistical equilibrium and charge-particle conservations. Transfer equation has been solved to get emitting spectral line profile as an initial value problem using Adams-Bashforth-Moulton method with accuracy as high as 12th order. And we have calculated above non linear differential equations simultaneously as a boundary value problem by finite difference method of 3 points approximation through Feautrier elimination scheme. It is found that all computing programs coded by above numerical methods work successfully for our model atmosphere.
4,000원