간행물

천문학논총 KCI 등재 Publications of the Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

Volume 29 Issue 3 (2014년 12월) 3

1.
2014.12 구독 인증기관 무료, 개인회원 유료
In ground-based astronomical spectroscopic observations, there are many telluric absorption lines that are laid on the spectra of celestial objects. To study the physical properties of the celestial objects with these contaminated spectra, the telluric lines should be removed. A conventional method for removing the telluric lines is using the standard stellar spectrum as telluric line. In this paper, we introduce a technique to calculate synthetic telluric spectra and use them to remove telluric lines from a spectrum of a celestial object. We used Line-by-Line Radiative Transfer Model (LBLRTM) for calculating a synthetic spectrum and selected Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) model as atmospheric model. We apply our method to some spectra obtained by Bohyunsan Observatory Echelle Spectrograph (BOES) to show that the telluric lines are well removed from the observed spectra by our model within an accuracy of 2% which is close to the 1-sigma rms of the original spectra.
4,000원
2.
2014.12 구독 인증기관 무료, 개인회원 유료
This paper describes the development of algorithm for direct data transmission between Raw VLBI Data Buffer (RVDB) and Huge Capacity Data Server (HCDS) operated in Korea-Japan Correlation Center (KJCC). The transmitted data is the VLBI observation data, which is recorded at each radio telescope site, and the data transmitting rate is varying from 1 Gbps, in usual case, upto 8 Gbps. The developed algorithm for data transmission enables the direct data transmission between RVDB and HCDS through 10 Gbps optical network using VLBI Data Interchange Format (VDIF). Proposed method adopts the conventional UDP/IP protocol, but in order to prevent the loss of data during data transmission, the packet error monitoring and data re-transmission functions are newly designed. The VDIF specification and VDIFCP (VDIF Control Protocol) are used for the direct data transmission between RVDB and HCDS. To validate the developed algorithm for data transmission, we conducted the data transmission from RVDB to HCDS, and compared to the transmitted data with the original data bit by bit. We confirmed that the transmitted data is identical to the original data without any loss and it has been recovered well even if there were some packet losses.
4,000원
3.
2014.12 구독 인증기관 무료, 개인회원 유료
We improved the antenna efficiency of the Taeduk Radio Astronomy Observatory (TRAO) 13.7-m radio telescope by adjusting the antenna panels based on digital photogrammetric measurements. First of all, we measured the surface accuracy of the main reflector of this antenna at three elevation angles of 35°, 45°, and 60°. We performed a total of four sets of the photogrammetric measurements and panel adjustments. When adjusting the panels, we positioned the antenna to the zenith and applied the measured data sets at the elevation of 45°. We found that the antenna surface accuracy has been improved by a factor of ~ 3 times after the final adjustment in comparison with the value before the adjustments. And we also found that the antenna surface accuracy tended to be slightly better at the elevation angles of 35° and 60° than that at the elevation angle of 45°. After the final panel adjustment, the aperture and beam efficiencies of the telescope have has been improved from 35% to 44%, and from 41% to 51%, respectively.
4,000원