간행물

천문학논총 KCI 등재 Publications of the Korean Astronomical Society

권호리스트/논문검색
이 간행물 논문 검색

권호

Volume 36 Issue 3 (2021년 12월) 3

1.
2021.12 구독 인증기관 무료, 개인회원 유료
Variability is one of the major characteristics of Active Galactic Nuclei (AGN), and it is used for understanding the energy generation mechanism in the center of AGN and/or related physical phenomena. It it known that there exists a time lag between AGN light curves simultaneously observed at different wavelengths, which can be used as a tool to estimate the size of the area that produce the radiation. In this paper, We present long term near-infrared variability of optically bright type 1 AGN using the Wide-field Infrared Survey Explorer data. From the Milliquas catalogue v6.4, 73 type 1 QSOs/AGN and 140 quasar candidates are selected that are brighter than 18 mag in optical and located within 5 degree around the ecliptic poles. Light curves in the W1 band (3.4 ㎛) and W2 band (4.6 ㎛) during the period of 2010-2019 were constructed for these objects by extracting multi-epoch photometry data from WISE and NEOWISE all sky survey database. Variability was analyzed based on the excess variance and the probability Pvar . Applying both criteria, the numbers of variable objects are 19 (i.e., 26%) for confirmed AGN and 12 (i.e., 9%) for AGN candidates. The characteristic time scale of the variability (τ) and the variability amplitude (σ) were derived by fitting the DRW model to W1 and W2 light curves. No significant correlation is found between the W1/W2 magnitude and the derived variability parameters. Based on the subsample that are identified in the X-ray source catalog, there exists little correlation between the X-ray luminosity and the variability parameters. We also found four AGN with changing W1-W2 color.
5,100원
2.
2021.12 구독 인증기관 무료, 개인회원 유료
Jagyeokru, an automatic striking water clock described in the Sejong Sillok (Veritable Records of King Sejong) is essentially composed of a water quantity control device and a time-signal device, with the former controlling the amount or the flow rate of water and the latter automatically informing the time based on the former. What connects these two parts is a signal generating device or a power transmission device called the ‘Jujeon’ system, which includes a copper rod on the float and ball-racked scheduled plates. The copper products excavated under Gongpyeong-dong in Seoul include a lot of broken plate pieces and cylinder-like devices. If some plate pieces are put together, a large square plate with circular holes located in a zigzag can be completed, and at the upper right of it is carved ‘the first scheduled plate (一箭).’ Cylinder-like devices generally 3.8 cm in diameter are able to release a ball, and have a ginkgo leaf-like screen fixed on the inner axis and a bird-shaped hook of which the leg fixes another axis and the beak attaches to the leaf side. The lateral view of this cylinder-like device appears like a trapezoid and mounts an iron ball. The function of releasing a ball agrees with the description of Borugak Pavilion, where Jagyeokru was installed, written by Kim Don (1385 ~ 1440). The other accounts of Borugak Pavilion’s and Heumgyeonggak Pavilion’s water clocks describe these copper plates and ball releasing devices as the ‘Jujeon’ system. According to the description of Borugak Pavilion, a square wooden column has copper plates on the left and right sides the same height as the column, and the left copper plate has 12 drilled holes to keep the time of a 12 double-hours. Meanwhile, the right plate has 25 holes which represent seasonal night 5-hours (Kyeong) and their 5-subhours (Jeom), not 12 hours. There are 11 scheduled plates for seasonal night 5-hours made with copper, which are made to be attached or detached as the season. In accordance with Nujutongui (manual for the operation of the yardstick for the clepsydra), the first scheduled plate for the night is used from the winter solstice (冬至) to 2 days after Daehan (大寒), and from 4 days before Soseol (小雪) to a day before the winter solstice. Besides the first scheduled plate, we confirm discovering a third scheduled plate and a sixth scheduled plate among the excavated copper materials based on the spacing between holes. On the other hand, the width of the scheduled plate is different for these artifacts, measured as 144 mm compared to the description of the Borugak Pavilion, which is recorded as 51 mm. From this perspective, they may be the scheduled plates for the Heumgyeonggak Ongru made in 1438 (or 1554) or for the new Fortress Pavilion installed in Changdeokgung palace completed in 1536 (the 31st year of the reign of King Jungjong) in the early Joseon dynasty. This study presents the concept of the scheduled plates described in the literature, including their new operating mechanism. In addition, a detailed model of 11 scheduled plates is designed from the records and on the excavated relics. It is expected that this study will aid in efforts to restore and reconstruct the automatic water clocks of the early Joseon dynasty.
4,600원
3.
2021.12 구독 인증기관 무료, 개인회원 유료
This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of ‘a ratchet gear, a shaft and a spur gear’ installed in the solstice-colure double- ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.
5,100원