검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the time signal devices of Deungnu (circa 1270) and Gungnu (1354), the water clocks produced during the Yuan Dynasty (1271–1368). These clocks influenced Heumgyeonggaknu (1438) of the Joseon Dynasty (1392–1910), exemplifying the automatic water clocks of the Yuan Dynasty. Deungnu, Gungnu, and Heumgyeonggaknu can be considered as automatic mechanical clocks capable of performances. The Jega-Yeoksang-Jip (Collection of Calendrical and Astronomical Theories of Various Chinese Masters) contains records of Deungnu extracted from the History of the Yuan Dynasty. We interpreted these records and analyzed reproduction models and technical data previously produced in China. The time signal device of Deungnu featured a four-story structure, with the top floor displaying the four divine constellations, the third floor showcasing models of these divinities, the second floor holding 12-h jacks and a 100-Mark ring, and the first floor with four musicians and a 100-Mark Time-Signal Puppet providing a variety of visual attractions. We developed a 3D model of Deungnu, proposing two possible mechanical devices to ensure that the Time-Signal Puppet simultaneously pointed to the 100-Mark graduations in the east, west, south, and north windows: one model reduced the rotation ratio of the 100-Mark ring to 1/4, whereas the other model maintained the rotation ratio using four separate 100-Mark rings. The power system of Deungnu was influenced by Suunuisangdae (the water-driven astronomical clock tower) of the Northern Song Dynasty (960–1127); this method was also applied to Heumgyeonggaknu in the Joseon Dynasty. In conclusion, these automatic water clocks of East Asia from the 13th to 15th centuries symbolized creativity and excellence, representing scientific devices that were the epitome of clock-making technology in their times.
        4,300원
        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of ‘a ratchet gear, a shaft and a spur gear’ installed in the solstice-colure double- ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.
        5,100원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Jagyeokru, an automatic striking water clock described in the Sejong Sillok (Veritable Records of King Sejong) is essentially composed of a water quantity control device and a time-signal device, with the former controlling the amount or the flow rate of water and the latter automatically informing the time based on the former. What connects these two parts is a signal generating device or a power transmission device called the ‘Jujeon’ system, which includes a copper rod on the float and ball-racked scheduled plates. The copper products excavated under Gongpyeong-dong in Seoul include a lot of broken plate pieces and cylinder-like devices. If some plate pieces are put together, a large square plate with circular holes located in a zigzag can be completed, and at the upper right of it is carved ‘the first scheduled plate (一箭).’ Cylinder-like devices generally 3.8 cm in diameter are able to release a ball, and have a ginkgo leaf-like screen fixed on the inner axis and a bird-shaped hook of which the leg fixes another axis and the beak attaches to the leaf side. The lateral view of this cylinder-like device appears like a trapezoid and mounts an iron ball. The function of releasing a ball agrees with the description of Borugak Pavilion, where Jagyeokru was installed, written by Kim Don (1385 ~ 1440). The other accounts of Borugak Pavilion’s and Heumgyeonggak Pavilion’s water clocks describe these copper plates and ball releasing devices as the ‘Jujeon’ system. According to the description of Borugak Pavilion, a square wooden column has copper plates on the left and right sides the same height as the column, and the left copper plate has 12 drilled holes to keep the time of a 12 double-hours. Meanwhile, the right plate has 25 holes which represent seasonal night 5-hours (Kyeong) and their 5-subhours (Jeom), not 12 hours. There are 11 scheduled plates for seasonal night 5-hours made with copper, which are made to be attached or detached as the season. In accordance with Nujutongui (manual for the operation of the yardstick for the clepsydra), the first scheduled plate for the night is used from the winter solstice (冬至) to 2 days after Daehan (大寒), and from 4 days before Soseol (小雪) to a day before the winter solstice. Besides the first scheduled plate, we confirm discovering a third scheduled plate and a sixth scheduled plate among the excavated copper materials based on the spacing between holes. On the other hand, the width of the scheduled plate is different for these artifacts, measured as 144 mm compared to the description of the Borugak Pavilion, which is recorded as 51 mm. From this perspective, they may be the scheduled plates for the Heumgyeonggak Ongru made in 1438 (or 1554) or for the new Fortress Pavilion installed in Changdeokgung palace completed in 1536 (the 31st year of the reign of King Jungjong) in the early Joseon dynasty. This study presents the concept of the scheduled plates described in the literature, including their new operating mechanism. In addition, a detailed model of 11 scheduled plates is designed from the records and on the excavated relics. It is expected that this study will aid in efforts to restore and reconstruct the automatic water clocks of the early Joseon dynasty.
        4,600원
        5.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hong, Dae-Yong manufactured the Tongcheon-ui (Pan-celestial Armillary Sphere) with cooperating clock researcher Na, Kyeong-Jeok, and its craftsman An, Cheo-In, in Naju of Jeolla Province in 1760 ~ 1762. Tongcheon-ui is a kind of astronomical clock with an armillary sphere which is rotated by the force generated by a lantern clock’s weight. In our study, we examine the lantern clock model of Tongcheon-ui through its description of the articles written by Hong himself. As his description, however, did not explain the detail of the mechanical process of the lantern clock, we investigate the remains of lantern clocks in the possession of Korea University Museum and Seoul National University Museum. Comparing with the clocks of these museums, we designed the lantern clock model of Tongcheon-ui which measures 115 mm (L) × 115 mm (W) × 307 mm (H). This model has used the structure of the striking train imitated from the Korea University Museum artifact and is also regulated by a foliot escapement which is connected to a going train for timekeeping. The orientation of the rotation of the going train and the striking train of our model makes a difference with the remains of both university museums. That is, on the rotation axis of the first gear set of Tongcheon-ui’s lantern clock, the going and the striking trains take on a counterclockwise and clockwise direction, respectively. The weight of 6.4 kg makes a force driving these two trains to stick to the pulley on the twine pulling across two spike gears corresponding to the going train and the striking train. This weight below the pulley may travel down about 560 mm per day. We conclude that the mechanical system of Tongcheon-ui’s lantern clock is slightly different from the Japanese style.
        4,800원
        6.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We study the internal structure under the artificial mountain of Heumkyeonggak-nu, a Korean water-powered clock in the early Joseon dynasty. All the puppets on the artificial mountain are driven by the rotational force generated by the water wheel at their designated time. We design a model that work with three parts of the artificial mountain. At the upper part of the artificial mountain to the east, west, north and south, there are four puppets called the Four Mystical Animal Divinity and four ladies called the Jade Lady respectively. The former rotates a quarter every double hour and the latter rings the bell every hour. In the middle part of this mountain is the timekeeping platform with four puppets; the Timekeeping Official (Hour Jack), the Bell-, Drum-, and Gong-Warriors. The Hour Jack controls time with three warriors each hitting his own bell, drum, and gong, respectively. In the plain there are 12 Jade Lady puppets (the lower ladies) combined with 12 Oriental Animal Deity puppets. In his own time a lady doll pops out of the hole and her animal doll gets up. Two hours later, the animal deity lies down and his lady hides in the artificial plain. These puppets are regularly moved by the signal such as iron balls, bumps, levers, and so on. We can use balls and bumps to explain the concept of the Jujeon system. Iron balls were used to manipulate puppets of the timekeeping mechanism in Borugak-nu, another Korean water-powered clock in Joseon dynasty, which was developed earlier than Heumgyeonggak-nu. According to the North Korea’s previous study (Choi, 1974), it is obvious that bumps were used in the internal structure of Heumgyeonggak-nu. In 1669, The armillary clock made by Song, I-young was also utilized bumps. Finally we presented mock-ups of three timekeeping systems.
        4,000원
        7.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        조명 색온도에 따른 작업자의 피로도를 평가하기 위하여 세 종류의 조명 색온도(2700 K, 4000 K, 6500 K)를 실험변수로 하여 모니터상에서 오류수정 작업이 수행되었다. 색온도의 변화에 따른 인체의 영향을 평가하기 위하여 먼저 주관평가와 작업수행도의 상관관계를 분석하였다. 시각피로·정신피로와 집중도에 관한 주관평가를 실시한 결과, 2700 K에서 시각피로 및 정신피로가 가장 적고 집중도가 높으며 작업수행도가 가장 좋았다. 6500 K에서 정신피로를 가장 많이 느끼고 집중도가 제일 낮았으나, 시각피로를 가장 많이 느낀 4000 K에서의 작업수행도가 가장 낮았다. 결과적으로 세 가지 색온도 조건 중 2700 K가 모니터상의 오류수정 작업에 가장 적합하다고 할 수 있다.
        4,000원
        8.
        2001.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The evaluation of mental workload is measured by subjective ratings, physiological signals. It takes long time to analysis the measured signals and is very tedious and time-consumming work. Therefore, to evaluate the affect of workload effectively, real-time measurement system is required. In this paper, real-time mental workload measurement system using cardiac autonomic indiced which reflect well the mental workload was developed and evaluated. Analyzed indices were HR, IBI, Lorentz plot, CSI, CVI, and LF/HF ratio of heart rate variability. The system was applied to evaluate the affect of arithmetic task and showed good results. This system was consisted of ECG amplifier, A/D converter, and personal computer, and algorithm was implemented using LabVIEW.
        4,000원
        9.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        단조 작업에 의한 정신적 피로도의 평가를 위하여 피험자에게 1자릿수 숫자 3개를 더하는 연산 작업을 수행하게 하였다. 주관적 평가를 통해 단조작업임이 확인된 task를 사용하여 작업 시간이 증가함에 따라 단조감이 증가하도록 실험과정을 설계하고 생리신호를 측정하였다. 측정된 생리신호 중 심전도, 피부온도, 호흡을 분석하였다. 단조 작업을 수행함에 따라 피부온도의 증가 경향이 나타났으며, 심박 변화율의 전력스펙트럽 분석결과 고주파성분의 감소와 Power spectrum balance가 증가하였다. 특히 power spectrum balance와 주관적 평가치의 상관관계가 높게 나타났다. 또한 상관관계가 높은 생리신호를 사용하여 정신피로를 예측한 결과 (R=0.945)가 정신피로를 잘 나타낼 수 있음을 알 수 있었다.
        4,000원