During the Joseon dynasty, the Gwansanggam (觀象監, The Royal Astronomical Observatory) was the royal administration in charge of Astronomy (天文), Geography (地理), Calendars (曆), Astronomical and meteorological observation (測候), and Timekeeping (刻漏). Of those affairs, the Astronomical Almanac compilation was most important. In this paper, we study the education and selection of astronomical officials in the 19th century during the Joseon dynasty, focusing on Astronomical Almanac officials. According to this study, their main area was calendar calculation, and they were involved in Astronomical Almanac compilation for nearly 40 years, until they resigned. In addition, they served as Samryeok-susulgwan (三曆 修述官, Official for calendar calculation by the Shíxiàn calendar), and Ilgwa-gamingwan (日課監印官, Official printing supervisor). To undertake these core duties, an official had to pass several examinations and courses. The Gwansanggam (after Gwansangso) carried out the educational function for the officials. In particular, reserved officials of the astronomy division had to be educated starting with a trainee course.
The royal astronomical observatory compiled the Astronomical Almanac during the Joseon dynasty, though there were some changes of its organization. However, the observatory underwent sudden changes in the late period mainly due to the influence of historical events such as the Gabo (甲午) and The Eulmi (乙未) Reforms in 1894 and 1895, respectively, and the Japanese invasion in 1910. In this paper, we study the changes of the compilation institution of the Korean Astronomical Almanac and of its organization for the period of 1894 to 1912. During this period, the name of the observatory had been changed several times, from Gwansanggam (觀象監) to Gwansangguk (觀象局) in 1894 and to Gwansangso (觀象所) in 1895. In addition, the affair of the Astronomical Almanac compilation was transferred to the Editorial Bureau [編輯局] of the Ministry of Education [學部] and to the Editing Department [編輯課] of the Governor-General of Korea [朝鮮總督府]. In 1907, the Gwansangso was abolished. Moreover, the affair of timekeeping was separated and the official number of personnel was reduced to less than 5% compared to that of Gwansanggam. Consequently, the royal astronomical observatory was significantly reduced in terms of its functions and the organization through the process of those changes. Therefore, we believe that this period is important when seeking to understand the transition between the traditional Astronomical Almanac of the Joseon dynasty and its modern astronomical counterpart of the present day.
The e-CALLISTO is a network of CALLISTO (Compact Astronomical Low-frequency, Low-cost Instrument for Spectroscopy in Transportable Observatories) spectrometers which detect solar radio bursts 24 hours a day in frequency range 45-870 MHz. The number of channels per spectrum is 200 and the time resolution of whole spectrum is 0.25 second. The Korean e-CALLISTO station was developed by Korea Astronomy and Space Science Institute (KASI) collaborating with Swiss Federal Institute of Technology Zurich (ETH Zurich) since 2007. In this paper, we report replacement of the tracking mount and development of the control program using Visual C++/MFC. The program can make the tracking mount track the Sun and schedule CALLISTO to start and to finish its observation automatically using the Solar Position Algorithm (SPA). Daily tracking errors (RMSE) are 0.0028 degree in azimuthal axis and 0.0019 degree in elevational axis between 2014 January and 2015 July. We expect that the program can save time and labor to make the observations of solar activity for space weather monitoring, and improve CALLISTO data quality due to the stable and precise tracking methods.
As a part of the short-period variability survey (SPVS) at Bohyunsan Optical Astronomy Observa- tory, we obtained time-series BV CCD images in the region of the open cluster NGC 1039 (M34). The observations were performed for 22 nights from July 29, 2008 to September 26, 2010. We also made LOAO observations for 10 days from September 18, 2009 to October 30, 2010 to confirm the small variabilties of δ Scuti-type variable stars. In this paper we presented the observational properties of 28 variable stars found in the region. They are seven δ Scuti-type variable stars, two Doradus-type variable stars, four- teen eclipsing binary stars and five semi-long periodic or slow irregular variables, respectively. Only three variables were listed in the GCVS and the rest are newly discovered ones. We have performed multiple- frequency analysis to determine pulsation frequencies of the δ Scuti-type and ɤ Doradus-type variable stars, using the discrete Fourier transform and linear least-square fitting methods. We also have derived the periods and amplitudes of 12 eclipsing binaries from the phase fitting method, and presented the light curves of all variable stars.