검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        레벨셋 기법과 위상민감도를 이용하여 선형 탄성 구조물에 대하여, 초기 설계형상에 의존성이 없는 위상 및 형상 최적설계 기법을 개발하였다. 레벨셋 기법에서는 복잡한 위상 형상변화를 쉽게 다루기 위해 초기 영역은 고정한 채 레벨셋 함수로 표현되는 암시적 이동경계로 경계를 표현한다. 해밀턴-자코비(H-J) 방정식과 수치적으로 강건한 기법인 ‘up-wind scheme’은 컴플라이언스 목적함수를 최소화시키고 허용체적 제약조건을 만족시키면서, 초기 암시적 경계를 법선 속도장에 따라 최적의 형상으로 이끌어 낸다. 점근적인 정규화 개념에 근거하여, 구멍의 반지름을 0으로 접근시켜 형상 미분의 극한을 취한 위상민감도를 고려하였다. 최적조건으로부터 유도된 라그란지안의 감소 방향을 이용하여 H-J 방정식을 갱신하기 위한 속도장을 결정하였다. 개발한 방법에서는 위상민감도로부터 얻어지는 지표를 이용하여 구멍을 언제든지 어디에서나 생성가능하기 때문에 초기 구멍이 최적 형상을 얻기 위해 요구되지 않는다는 사실을 확인하였다. 또한 효율적인 최적화 과정을 위해서는 구멍 생성을 위한 조정변수의 적절한 선택이 중요함을 확인하였다.
        4,000원
        2.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        레벨셋 기법과 무요소법을 결합한 위상 및 형상 최적설계 기법을 개발하여 선형 탄성문제에 적용하였다. 설계민감도는 애드조인트법을 사용하여 효율적으로 구하였다. 해밀턴-자코비 방정식을 업-윈드 기법을 이용하여 수치적으로 풀었으며, 구조물의 경계는 레벨셋 함수를 이용하여 암시적으로 표현하였다. 구조물의 응답과 설계민감도를 얻기 위하여 암시적 함수를 사용하여 명시적 경계를 생성하였다. 재생 커널 기법에 기초하여 얻어진 전역 절점 기저함수를 사용하여 연속체 지배방정식의 변위장을 이산화하였다. 따라서 질점들을 연속체 영역의 어느 곳이든 위치시킬 수 있으며, 이는 통해 명시적 경계를 생성하는 것이 가능하며, 결과적으로 정확한 설계를 얻을 수 있다. 개발된 방법은 제한 조건이 있는 최적설계 문제에 대하여 라그랑지안 범함수를 정의한다. 이는 경계의 변화를 통하여 허용 부피 제한조건을 만족시키면서 컴플라이언스를 최소화한다. 최적설계 과정 동안 라그랑지안 범함수의 최적화조건을 만족시킴으로써 해밀턴-자코비 방정식을 풀기 위한 속도장을 얻는다. 기존의 형상 최적설계 기법에 비하여, 본 방법론은 위상과 형상의 변화를 쉽게 얻어낼 수 있다.
        4,000원
        3.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        레벨셋방법과 헤비사이드 강화를 이용한 아이소-지오메트릭 위상최적설계 방법을 개발하였다. 레벨셋 방법에서는 초기 해석영역은 고정되어 있으며 경계는 레벨셋 함수값을 이용한 암시적인 동적 경계로 표현되며, 이는 복잡한 위상적 변화를 용이하게 표현할 수 있게 한다. 헤비사이드 강화는 기존의 기저함수에 내부 경계를 표현하는 강화 함수를 더함으로써 아이소-지오메트릭 해석법의 정밀도를 향상시킨다. 제안된 위상 최적설계 방법은 다음과 같은 이점을 갖는다. 아이소-지오메트릭 해석법을 이용하여 정밀한 기하 형상을 얻을 수 있으며 텐서 곱을 이용하여 정의된 패치의 한계를 헤비사이드 강화를 이용함으로써 해결할 수 있다. 단일 패치를 사용함으로써 연속적인 응력 분포를 얻어낼 수 있을 뿐 아니라 불연속적인 변위장 또한 표현해 낼 수 있다. 레벨셋 방법론이 암시적 동적 경계를 잘 표현하기 때문에 이를 이용하여 헤비사이드 강화를 이용한 아이소-지오메트릭 해석법에서 위상의 변화를 잘 표현해 낼 수 있다.
        4,000원
        4.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.
        4,000원
        5.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A topology optimization method for phononic crystals is developed for the design of sound barriers, using the level set approach. Given a frequency and an incident wave to the phononic crystals, an optimal shape of periodic inclusions is found by minimizing the norm of transmittance. In a sound field including scattering bodies, an acoustic wave can be refracted on the obstacle boundaries, which enables to control acoustic performance by taking the shape of inclusions as the design variables. In this research, we consider a layered structure which is composed of inclusions arranged periodically in horizontal direction while finite inclusions are distributed in vertical direction. Due to the periodicity of inclusions, a unit cell can be considered to analyze the wave propagation together with proper boundary conditions which are imposed on the left and right edges of the unit cell using the Bloch theorem. The boundary conditions for the lower and the upper boundaries of unit cell are described by impedance matrices, which represent the transmission of waves between the layered structure and the semi-infinite external media. A level set method is employed to describe the topology and the shape of inclusions. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. Through several numerical examples, the applicability of the proposed method is demonstrated.
        4,000원