V-type coupling, which is often applied to wastegate-turbochargers(WGT), is a mechanical fastener. Its radial forces generated from the bolt pretension load colse contact with each other to the axial direction for turbine housing and center housing rotating assembly(CHRA). In addition, the torsional stiffness between two bodies should be sufficiently secured to minimize the linkage angle change from the EWGA to the valve spindle. Therefore, in this study, the torsional stiffnesses according to the effects of positioning pins and friction coefficient, and the bolt pretension loads were calculated for V-coupling turbocharger. As a result, it can be seen that the torsional stiffness of the coupling according to the number of position pins is very small. And, when the friction coefficient and the axial force of the bolt are large, the torsional stiffness is greatly increased, and gradually decreasing when the bolt load of the coupling is about 6,000 N or more.
The structural performance of a vehicle can be evaluated by the static and dynamic structural analyses which predict the amount of deformation, stiffness. And the static analysis should be done first. Another important aspect to be considered in the design process is crashworthiness, because a structurally sturdy vehicle body may be overdesigned with excessive strength and durability standards. The ideal condition of a body structure is to absorb impact load at a certain level of local deformation, to distribute the load to each structure adequately, and to prevent excessive stress concentration and deformation. This paper is the result of the consideration of automotive body, bending and torsional stiffness for structure stiffness estimation of automotive body through finite element modeling.
The stiffness of a bicycle frame is a major factor of a bicycle performance related to safety, stability, and weight. In this study, the torsional and bottom bracket stiffness of a bicycle frame were experimentally investigated. The torsional and bottom bracket stiffness for 63 bicycle frames were evaluated and analyzed by measuring the displacement of frames. The torsional stiffness is related with turning performance and the bottom bracket stiffness is related with power transmission. The experimental results show that the average stiffness varies up to 20 % according to the frame materials and types. The torsional stiffness has a strong corelation with the bottom bracket stiffness even though they have different effects on a bicycle frame. It seems that the experimental results can be applied to the quality criteria of racing bicycles and also design standard of a bicycle frame.
Torsional constants of both rectangular cross section and circular cross section are induced by exact solution, and was easy to calculate since of simple shape. However, it is very difficult to calculate the torsional constant of both an arbitrary cross-section and a composite cross-section. In this study, a finite element formulation was proposed as a method to calculate the torsional constant of both an arbitrary cross-section and a composite cross-section. From the numerical study, numerical results was compared with exact solution.