Resource recovery and recycling of materials and products, including polyurethanes is viewed as a necessity in today's society. Most urethane polymers are made from a polyol and a diisocyanate. these and be chemicals such as water, diamines or diols that react with isocyanate groups and add to the polymer backbone. The problems of recycling polyurethane wastes has major technological, economic and ecological significance because polyurethane itself is relatively expensive and its disposal whether by burning is also costly. In general, the recycling methods for polyurethane could be classified as mechanical, chemical and feedstock. In the chemical recycling method, there are hydrolysis, glycolysis, pyrolysis and aminolysis. This study, the work was carried out glycolysis using sonication ant catalyzed reaction. Different kinds of recycled polyols were produced by current method(glycolysis), catalyzed reaction and sonication as decomposers and the chemical properties were analyzed. The reaction results in the formation of polyester urethane diols, the OH value which is determined by the quantity of diol used for the glycolysis conditions. The glycolysis rates by sonication for the various glycols, increased as fallows: PPG <PEG < DEG < EG. The recycled polyol of sonication reaction had much higher OH value, much lower decomposition temperature and time than the recycled polyol of current method in which same glycols and catalyst were used.
Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral(PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land costs eliminate landfilling option, need a sustainable, environment-friendly technology to recycle these solid wastes. In our current study, we have developed a mechano-chemical separation process to separate PVB resins from glass and have characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Feasibility for reuse of these recycled PVB has been investigated. The technology developed in our laboratory is sustainable, environment-friendly, techno-economical feasible process, and capable of mass production (recycling).
본 연구는 산업부산물인 제철 산업의 전기로 산화슬래그골재를 이용하여 천연골재를 대체하고 자동차 산업에서 발생하는 폐유리를 분쇄하여 채움재로 활용하는 연구로써, 환경친화적인 아스팔트 포장 재료를 개발하였으며, 폐PVB로 아스팔트 바인더의 물리적 성능을 개선하여 현장적용성을 검토하였다. 최적의 공극률을 결정하기 위한 반복적인 배합설계를 거쳐서 13-5mm(40%), 5-0mm(57%), 폐유리미분말 채움재(3%), 아스팔트(4.1%)의 투입량을 결정하였으며, 마샬안정도는 약 10,000N의 강도를 발현하였으며, 간접인장강도는 1.00~1.16 MPa의 범위를 나타내고 있었다. 혼합 및 다짐온도 조건은 실내 최적 배합설계에서 적용한 결과를 동일하게 적용하였다. 현재 전기로 산화슬래그는 제철 인근의 토목현장에 사용되고 있으며, PVB 필름과 차량 폐유리는 토목·건축용 자재로 일부 사용되고 있으므로 향후 도로현장이 추가 수요처로 안정된 소비가 기대된다. 본 연구에서 더욱 기대되는 것은 PVB 필름으로 개발될 중온형 아스팔트 바인더에 전기로 산화 슬래그 골재의 높은 강성과 고분말 폐유리 미분말의 충진성이 조화되어 기존 제품과 차별화된 친환경 고내구성 포장체의 한 분야를 개척할 수 있을 것으로 기대된다.