Better understanding the mechanism of black ice occurrence on the road in winter is necessary to reduce the socio-economic damage it causes. In this study, intensive observations of road weather elements and surface information under the influence of synoptic high-pressure patterns (22nd December, 2020 and 29th January, and 25th February, 2021) were carried out using a mobile observation vehicle. We found that temperature and road surface temperature change is significantly influenced by observation time, altitude and structure of the road, surrounding terrain, and traffic volume, especially in tunnels and bridges. In addition, even if the spatial distribution of temperature and road surface temperature for the entire observation route is similar, there is a difference between air and road surface temperatures due to the influence of current weather conditions. The observed road temperature, air temperature and air pressure in Nongong Bridge were significantly different to other fixed road weather observation points.
In the North Pacific Ocean a lot of large waves set up in winter, affected by continued winds and swells owing to severe extratropical cyclones. Under this sea condition, if the ship is about 100,000L/T (in deadweight capacity tonnage), we can't find the danger involved in the ship at sea apparently. But when we compare the seaworthiness of ship's building strength with the stress given to the hull by waves, we can't insist that the former be more stronger than the latter. As a result, VLCC is in danger of destroying and cutting for lack of longitudinal strength in heavy weather. Up to this time, Naval Architects have actively studied the relation between ship's longitudinal strength and waves as a ship's projector; however, actually, they have never made more profound study on the problem of longitudinal strength in relation to navigation. The main puprpose of this thesis is to clarify these vivid actual states of ship's trouble unknown to ship's masters. In this thesis we picked up VLCC Pan Yard, a vessel of Pan Ocean Bulk Carrier company's, as a model ship. And in the North Pacific Ocean, we have chosen for this research the basins where the wind speed and the wave height are greater than average. The data used this thesis are quotes from the "winds and waves of the North Pacific Ocean('64-'73)", and wind speed more than 30 knots was made use of as an ocject of this study. By usinh the ITTC wave spectrum, we found out the significant waves for every 5 knots within the range of 20 knots to 45 knots of wind speed. According to this H1/1000 was calculated. The stress of ship's hull is determined by ship's speed and wave height. We compared the ship's longitudinal strength with a planned wave height by rules of several famous classification societies in the world. In the last analysis, we found out that ship's present planned strength in heavy weather is not enough. Finally we made a graph for avoiding heavy weather, with which we studied safe ship's handling in the North pacafic Ocean in winter.