The effect of altitude and latitude on biodiversity (or species richness) has been a topic of great interest for many biogeographers for a long time. This study was conducted to examine the dynamics of species richness of aquatic insects along the altitudinal gradient in 24 wetlands on Mt. Halla, Jeju and test the Rapoport’s rule. The species richness of aquatic insects monotonically decreased with increasing altitude, showing a significant inverse correlation (r = -0.64). However, the pattern of species richness with altitude showed a hump-shaped relationship, with a peak in species richness at intermediate elevations when the effects of area were removed. The altitudinal range of species tended to increase with increasing altitude, as Rapoport’s rule predicts. There was a positive correlation between the altitudinal range size and the midpoint of the range size (Median) except for Hemiptera (Odonata: r = 0.75, Hemiptera: r = -0.22, Coleoptera: r = 0.72, Total: r = 0.55). Also, the extent of average altitudinal range of high-altitude species was 904.3m, and it was significantly wider than a 469.5m of low-altitude species. Consequently, the species richness of aquatic insects in wetlands on Mt. Halla along the altitudinal gradient well supported Rapoport’s rule.