Prediction of Turbulent Heat Transfer in Flow Between Parallel Plates with Fluid Transpiration Through Plates
The paper reports on the prediction of turbulent heat transfer in flows between parallel plates with wall transpiration. The elliptic blending second moment closure for turbulent stresses and the GGDH model for turbulent heat fluxes are employed to predict the turbulent flow and heat transfer. The numerical results by the adopted models are directly compared to the DNS data and the measurements to assess the performance of the model predictions. The predictions show correctly the effect of deceleration and acceleration of the flow caused by the transpiration, and the anisotropy of the turbulence structure is augmented towards downstream by the fluid injection. The turbulence structure and heat transfer characteristics of transpired flows are well captured by the present turbulence and heat flux models.