논문 상세보기

한국어 특성을 고려한 감성 분류 KCI 등재

Sentiment Classification considering Korean Features

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/246662
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
감성과학 (Korean Journal of the science of Emotion & sensibility)
한국감성과학회 (The Korean Society For Emotion & Sensibility)
초록

다양한 분야에서 인터넷 상의 방대한 양의 문서 혹은 리뷰로부터 유용한 정보를 얻고자 하는 노력이 높아짐에 따라 문서 혹은 리뷰 상의 생각 및 의견에 대한 자동 분류 연구의 필요성이 대두되었다. 이러한 자동분류를 감성 분류라 하며, 감성 분류 연구는 크게 세 가지 단계를 가지는데, 첫 번째로 주관적인 생각이나 느낌을 표현하는 문장을 추출하기 위한 주관성 분류 연구, 두 번째로 문서 또는 문장을 긍정, 부정으로 나누는 극성 분류 연구, 그리고 세 번째로 문서 또는 문장이 어느 정도의 주관성 및 극성을 갖는지 그 강도를 구하는 강도 분류 연구이다. 최근 의견 분류에 대한 연구들을 살펴보면, 분류를 위해 자질(Feature)로서 단일어(Single word)가 아닌 2개 이상의 N-gram 단어, 어휘 구문 패턴 및 통사 구문 패턴 등을 사용하는 것을 확인할 수 있다. 특히, 패턴은 단일어나 N-gram 단어에 비해 유연하고, 언어학적으로 풍부한 정보를 표현할 수 있기 때문에 이를 이용한 많은 연구가 이루어져 왔다. 그럼에도 불구하고, 이러한 연구들은 주로 영어에 대한 연구들이었으며, 한국어에 패턴을 적용하여 주관성을 갖는 문장을 분류하거나, 극성을 분류하는 연구들은 아직 미비하다. 한편, 한국어는 용언의 활용이 발달되어 있어, 어미의 변화가 다양하며, 그 변화에 따라 의미가 미묘하게 변화한다. 그러나 기존 한국어에 대한 의견 분류 연구들은 단어의 핵심 의미만을 파악하기 위해 어미부분을 제거하고 어간만을 취해서 처리하여 어미에 대한 의미변화를 고려하지 못하였다. 그래서 본 연구는 영어에 적용된 패턴을 이용한 기존 방법들을 정리하고, 그 방법들 중에서 극성을 지닌 문장성분 패턴을 한국어에 적용하였다. 그리고 어미의 변화에 대한 패턴을 추출하여 이 변화가 의견 분류의 성능에 미치는 영향을 분석하였다.

As occasion demands to obtain efficient information from many documents and reviews on the Internet in many kinds of fields, automatic classification of opinion or thought is required. These automatic classification is called sentiment classification, which can be divided into three steps, such as subjective expression classification to extract subjective sentences from documents, sentiment classification to classify whether the polarity of documents is positive or negative, and strength classification to classify whether the documents have weak polarity or strong polarity. The latest studies in Opinion Mining have used N-gram words, lexical phrase pattern, and syntactic phrase pattern, etc. They have not used single word as feature for classification. Especially, patterns have been used frequently as feature because they are more flexible than N-gram words and are also more deterministic than single word. Theses studies are mainly concerned with English, other studies using patterns for Korean are still at an early stage. Although Korean has a slight difference in the meaning between predicates by the change of endings, which is 'Eomi' in Korean, of declinable words, the earlier studies about Korean opinion classification removed endings from predicates only to extract stems. Finally, this study introduces the earlier studies and methods using pattern for English, uses extracted sentimental patterns from Korean documents, and classifies polarities of these documents. In this paper, it also analyses the influence of the change of endings on performances of opinion classification.

저자
  • 김정호(한국항공대학교 컴퓨터공학과) | Kim, Jung-Ho 교신저자
  • 김명규(한국항공대학교 컴퓨터공학과) | Kim, Myung-Kyu
  • 차명훈(한국항공대학교 컴퓨터공학과) | Cha, Myung-Hoon
  • 인주호(한국항공대학교 컴퓨터공학과) | In, Joo-Ho
  • 채수환(한국항공대학교 항공전자정보통신공학부) | Chae, Soo-Hoan