We aimed to examine the co-doping effects of 1/6mol% Mn3O4 and 1/4mol% Cr2O3 (Mn:Cr=1:1) on the reaction,microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-Bi2O3-Sb2O3 (ZBS;Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors werecontrolled using the Sb/Bi ratio. Pyrochlore (Zn2Bi3Sb3O14), α-spinel (Zn7Sb2O12), and δ-Bi2O3 (also β-Bi2O3 at Sb/Bi≤1.0)were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposedand promoted densification at lower temperature on heating in Sb/Bi=1.0 system by Mn rather than Cr doping. A morehomogeneous microstructure was obtained in all systems affected by α-spinel. In ZBS(MnCr), the varistor characteristics wereimproved dramatically (non-linear coefficient, α=40~78), and seemed to form Vo.(0.33eV) as a dominant defect. Fromimpedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentativelyassigned to ZnO/Bi2O3 (Mn,Cr)/ZnO (0.64~1.1eV) and the other is assigned to the ZnO/ZnO (1.0~1.3eV) homojunction.