Despite the accident rate for fishing vessels accounts for 70% of all maritime accidents, few studies on such accidents have been done and most of the them mainly focus on causes and mitigation policies to reduce that accident rate. Thus, this risk analysis on sea accidents is the first to be performed for the successful and efficient implementation of accident reducing measures. In risk analysis, risk is calculated based on the combination of frequency and the consequence of an accident, and is usually expressed as a single number. However, there exists uncertainty in the risk calculation process if one uses a limited number of data for analysis. Therefore, in the study we propose a probabilistic simulation method to forecast risk not as a single number, but in a range of possible risk values. For the capability of the proposed method, using the criteria with the ALARP region, we show the possible risk values spanning across the different risk regions, whereas the single risk value calculated from the existing method lies in one of the risk regions. Therefore, a decision maker could employ appropriate risk mitigation options to handle the risks lying in different regions. For this study, we used fishing vessel accident data from 1988 to 2016.