Polluting gases emitted from industrial sites take compound forms consisting of gaseous and particulate phases. Localization of PTFE membrane filters has thus been initiated to remove particulate materials and mercury, which is a heavy and hazardous metallic element. More specifically, a PTFE membrane filter was fabricated by thermal laminating technology to vary porosity on the filter surface for removal of particulate materials thereon. Optimized equi-biaxial stretching ratio control enables minimization of large-size pore formation with an average pore size of 0.58 μm and improved air permeability of 8.03 cm3/cm2/sec. Various adsorbents were tested for removal of mercury vapor by surface treatment of the PTFE membrane filter. The filter’s surface was further altered using functional amine group compounds: one composed of silane coupling agent (APTMS) was found suitable as a mercury adsorbent. When ACF with a large surface area was used as support material, mercury removal efficiency increased threefold to 0.162 mg/g-ACF. Furthermore, the developed PTFE membrane filter was tested in its capacity of differential pressure and filtering efficiency using a pilot scale particulate removal unit. Stable and consistent differential pressure was maintained during long-term operation and less frequent periods of filter shutdown due to pores filling with 99.96% of particulate removal efficiency, which was more than satisfactory filtration efficiency.