Polluting gases emitted from industrial sites take compound forms consisting of gaseous and particulate phases. Localization of PTFE membrane filters has thus been initiated to remove particulate materials and mercury, which is a heavy and hazardous metallic element. More specifically, a PTFE membrane filter was fabricated by thermal laminating technology to vary porosity on the filter surface for removal of particulate materials thereon. Optimized equi-biaxial stretching ratio control enables minimization of large-size pore formation with an average pore size of 0.58 μm and improved air permeability of 8.03 cm3/cm2/sec. Various adsorbents were tested for removal of mercury vapor by surface treatment of the PTFE membrane filter. The filter’s surface was further altered using functional amine group compounds: one composed of silane coupling agent (APTMS) was found suitable as a mercury adsorbent. When ACF with a large surface area was used as support material, mercury removal efficiency increased threefold to 0.162 mg/g-ACF. Furthermore, the developed PTFE membrane filter was tested in its capacity of differential pressure and filtering efficiency using a pilot scale particulate removal unit. Stable and consistent differential pressure was maintained during long-term operation and less frequent periods of filter shutdown due to pores filling with 99.96% of particulate removal efficiency, which was more than satisfactory filtration efficiency.
기존의 화석 연료를 대체할 에너지 확보의 중요성이 커짐에 따라, 폐기물도 하나의 자원으로 떠오르고 있다. 특히, 폐기물을 이용하여 가스화를 할 경우 화학연료 또는 발전에 이용할 수 있는 CO, H₂가 주성분인 합성가스를 생산할 수 있다. 그러나 폐기물 가스화의 경우 합성가스뿐만 아니라 미반응된 Carbon 분진과 폐기물에 함유된 성분으로 인해 가스상 오염물질 (HCl, HCN, NH₃ 등)이 발생하게 된다. 합성가스를 이용하기 위해서는 오염물질을 줄이고 합성가스의 순도를 높여야 한다. 그러므로 적절한 운전조건 도출과 최적의 정제 설비 구축이 요구되고, 이를 위해서는 폐기물 가스화를 통해 생성된 오염물질의 배출 특성을 파악할 필요가 있다. 본 연구에서는 폐기물 순산소 가스화를 통하여 생성되는 가스상 오염물질인 HCl, HCN, NH₃와 입자상 물질인 Carbon 분진의 배출량을 확인하였다. 분진의 시료 채취는 정제설비를 기준으로 정제설비 전단과 후단에서 3회 실시하여 분진의 배출량과 제거 효율을 살펴보았다. 가스상 오염물질의 시료채취는 분진과 같은 위치에서 2회 실시하여 비교하였다. 분진의 경우 정제설비 전단에서 평균 5,820 mg/Nm³을 나타내었으나, 정제설비 후단에서는 검출되지 않아, 정제설비를 통해 모두 제거되었음을 확인할 수 있었다. HCl, HCN, NH₃의 경우 정제설비 전단에서 각각 평균 24.87 ppm, 0.02 ppm, 2.19 ppm을 나타내었으며, 정제설비 후단에서 각각 평균 14.38 ppm, 0.01 ppm, 0.25 ppm을 나타내었다. 이들의 평균 제거효율은 42.20%, 52.96%, 88.81%임을 확인하였다. 연구 결과를 통해 입자상 물질인 분진의 경우, 정제설비를 통하여 발생량 대부분이 제거되었다. 그러나 가스상 오염물질 중 HCl의 경우, 제거효율 증가를 위해서 정제 설비에서 사용하는 가성소다의 액/기비 조절 등의 추가적인 연구가 필요하다고 판단된다.
순산소 가스화기로부터 발생한 합성가스는 분진, 황화합물, 염화수소 등의 오염물질을 포함하고 있기 때문에 후단공정에서 합성가스를 화학원료로 사용하기 위해서는 적절한 정제시스템을 통한 오염물질의 정제가 필요하다. 본 연구에서는 급속냉각탑, 분진세정탑, 중화세정탑 및 탈황세정탑으로 구성된 합성가스 정제설비로부터 발생한 합성가스 정제폐수의 적정 처리공정 구성을 위한 정제폐수의 여과, 응집, 침전 및 탈수 특성을 분석하였다. 본 연구에 사용된 합성가스 정제폐수는 다량의 부유물질(940 mg/L)을 함유하고 있으며, 이는 규조토코팅 여과를 통해서 2 mg/L 이하로 제거가 가능한 것이 확인되었다. Polymer, Alum, PAC, FeCl₃ 총 4가지의 응집제중 Polymer를 사용한 경우가 가장 높은 응집율을 보였으며, 또한 폐수 원액의 pH를 총 세 가지 조건으로 조절하여 침전특성을 분석한 결과 침전 시간 약 30분 경과 후 부유물질의 침전 상태를 확인할 수 있었다. 그리고 실험 조건별 규조토코팅 여과기에서 발생한 탈수 슬러지와 탈수액의 성분을 분석한 결과 탈수 슬러지의 경우는 철의 함량이 그리고 탈리액의 경우는 인의 함량이 높게 나타났다.
에너지 소비량 증가 및 국제 유가 상승으로 인해 대체에너지 개발의 중요성이 더욱 증가하고 있으며 염색슬러지의 경우 육상 매립 금지 및 해양배출 규제 정책의 강화로 인해 새로운 처리방안이 요구되고 있으므로 이에 대한 해결책으로 가스화 기술 등을 적용할 수 있다. 해양투기가 금지되는 연간 50 만톤 가량 발생되는 염색슬러지를 가스화 원료로 활용할 경우 처리비 약 240억 원을 절약할 수 있고 연간 약 6만 TOE의 화석연료 대체 효과가 있다. 가스화 기술은 유기성 슬러지에 포함된 유기물질을 CO와 H₂가 주성분인 합성가스로 변환시키고 가스화를 통해 생성된 청정 합성가스는 고온고압화가 가능하기 때문에 폐압 터빈을 적용함으로써 수요처의 특성에 따라 전기 및 스팀을 생산 할 수 있다. 또한 염색슬러지의 경우 폐수처리 과정에서 응집제의 사용으로 인해 산화철 성분을 포함하고 있으므로 처리대상물질 자체가 함유하고 있는 촉매성 물질인 고농도 산화철을 회수하여 타르 개질 촉매로 활용함으로써 타르의 생성량을 저감시킬 수 있고 고가의 촉매를 대체함으로써 경제성을 확보할 수 있으며 합성가스 생산 품질에 영향을 미치는 중요 인자인 오염물질을 제거함으로써 가스화율을 증가시킬 수 있을 것으로 판단된다. 본 연구에서는 염색슬러지와 왕겨 혼합물을 대상 시료로 하여 2톤/일급 가스화 설비를 이용하여 1단 버블유동층(BFBG)방식을 적용하여 가스화 실험을 수행하였으며 발생되는 합성가스 농도 측정 및 오염물질 분석을 통해 합성가스 생산 특성 및 오염물질 배출 특성을 파악하였다. 실험 결과 합성가스 조성별 평균 가스 농도는 H₂ 7.8%, O₂ 0.4%, N₂ 59.5%, CH₄ 2.1%, CO 11.4%, CO₂ 14.8%, C₂∼C₄ 2.1%로 나타났으며 평균 탄소전환율과 냉가스효율은 각각 72.6%와 49.8%로 나타났다. 또한 오염물질 제거 특성을 파악한 결과 타르 제거효율은 95.9%, 분진 제거효율은 99.7%로서 안정적인 연속운전이 가능하였다.
정부의 폐자원에너지화 정책에 따른 사업 추진이 활성화대고 있으며 폐기물의 연료화 및 가스화에 대한 국내외 기술개발 및 성장 잠재력이 확대되고 있으므로 시장대응에 필요한 기술개발이 필요하다. 국내의 경우 생활폐기물이 지자체에 의해 관리, 계획되고 있으며 지역주민들의 환경에 대한 관심 증대로 인해 친환경폐기물 처리 시설이 점차 요구되어 지고 있으나 소규모 지자체의 경우 경제적, 효율적으로 에너지 자원화를 통한 제도적, 기술적 지원 시책이 미비하고 경제성이 떨어져 사업추진이 곤란한 실정이다. 그러므로 에너지화 시설 설치가 어려운 지자체의 경우 중소규모 처리 시설을 대상으로 에너지 이용 효율이 높고 경제성 확보가 가능한 보급형 생활폐기물 가스화 시스템의 개발 및 적용이 필요하다고 할 수 있다. 생활 폐기물 가스화 기술은 폐기물 내의 탄소 및 수소 성분을 산화제인 공기와 반응시켜 CO 및 H₂가 주성분인 가연성 합성가스를 생산하는 기술로서 폐기물을 환경적으로 안정하게 처리할 수 있으며, 적절한 정제 공정을 통해 사용 목적에 따라 다양한 분야로 재활용이 가능하고 합성가스를 이용한 스팀생산, 고효율 가스엔진 발전 등을 통해 에너지 회수율을 높일 수 있다. 그러나 이와 같은 가스화를 통해 생산된 합성가스를 이용하여 연료로 사용하기 위해서는 합성가스 내 포함된 입자상 및 가스상 오염물질을 적절한 수준으로 정제하여야 하므로 본 연구에서는 가스화 발전시스템 적용을 위해 폐기물 특성과 합성가스 생산특성 주요 인자에 대한 운전 변수를 도출하기 위하여 Pilot급 생활폐기물 가스화 실험 설비를 이용하여 가스화 실험을 수행하였으며 공기가스화 조건에서 합성가스 생산 및 운전특성을 확인하였고 합성가스 생산 품질에 영향을 미치는 중요 인자인 미반응 탄소, 타르와 같은 오염물질 배출 특성을 파악하였다. 실험 결과 합성가스 주요 조성은 CO 5.0 ~ 11.2%, H₂ 5.1 ~ 8.5%, CH₄ 2.5 ~ 3.4%로 가연성 가스가 안정적으로 생산되었으며 정제설비 성능분석을 위해 정제설비 전・후단에서 합성가스 중 오염물질 농도를 분석한 결과 입자상 물질은 모두 제거가 가능하였으며, 가스상 오염물질은 95 ~ 97%의 제거 효율을 나타냄으로써 합성가스 엔진 유입 조건을 만족하는 것으로 나타났다.
세계적으로 에너지 수요량의 증가하고, 화석연료 고갈 및 지구온난화 대응 등 문제로 바이오매스 가스화를 통한 에너지 자원 개발이 이슈화 되고 있다. 일반적으로 바이오매스 가스화 공정에서 발생하는 타르는 가스화기 후단 설비 혹은 배관에 부착되어 배관 폐쇄에 따른 운전 정지와 가스화 전체 시스템 효율 저하의 주요 원인이 되고 있다. 이와 같은 타르 부착문제를 해결하기 위한 타르 개질용 촉매 대부분은 귀금속계로 고가일 뿐만 아니라, 탄소 침적에 의한 불활성 문제가 있으나, 산화철은 가격이 저렴하고 탄소 석출량이 적으며 열화가 잘 일어나지 않는 유기물 분해 촉매로 주목받고 있다. 육상직매립 및 해양투기가 금지된 염색슬러지 회재 중 약 70%는 산화철 성분이여서 타르개질 촉매로 충분히 활용 가능한 것으로 알려져 있다. 본 연구에서는 염색슬러지 혼합 유기자원 저온가스화 공정특성을 파악하고자 가스화 및 염색슬러지 내 철 촉매를 이용한 타르개질 공정 모사 모델을 구축하여 혼합 유기자원의 종류 및 운전조건 변화에 따른 합성가스 생산 특성을 고찰하였다. 왕겨, 타르 및 폐플라스틱을 염색슬러지와 각각 혼합한 시료의 가스화 공정 모사 결과 폐플라스틱을 혼합한 경우의 합성가스 발열량이 가장 높은 것으로 나타났다.