석유화학원료의 공급 불안정 및 기후환경변화 대처가 절실한 상황으로 최근 신재생에너지 분야에 관한 관심이 증대 되고 있다. 더불어 2012년부터 발효된 RPS(Renewable Portfolio Standard) 규제에 따라 국내 발전사들의 신재생에너지원으로 부터의 전기 생산 의무가 본격화되고 있다. 특히 폐자원 및 폐바이오매스를 이용한 에너지 생산 분야는 원료의 안정적인 공급 가능성과 기존 처리 방법의 제한적 이용으로 열화학적 전환 기술을 이용한 에너지 생산기술이 각광받고 있다. 대표적인 열화학적 전환 기술들 중 열분해 기술은 폐바이오매스에 적용을 통하여 기존 석탄 에너지 전환 시설의 대체 자원으로의 이용이 가능하며, 원료의 수급성 측면 및 다양한 원료 특성에 대응하기 위해 반탄화(Torrefaction) 기술이 제시되고 있다. 반탄화 기술은 폐바이오매스를 에너지원으로 적극 활용하기 위한 전처리 공정으로, 무산소 조건에서 낮은 온도영역인 200~300℃에서 가열하여 원료 내 함유된 휘발분 및 수분 제거를 통해 연료로 전환된다. 생성된 반탄화물은 소수성 및 낮은 함수율에 따라 운송성이 확대되며, 고정탄소 성분의 증가로 인한 높은 에너지밀도로, 석탄과 유사한 특성을 지니게 된다. 따라서 본 연구에서는 국내에서 발생되는 폐바이오매스의 에너지원으로의 적용성 평가를 위해 농산물에서 주로 발생되는 왕겨 및 볏짚을 이용한 반탄화 반응 특성을 분석하였다. 반탄화물은 특정 반응시간에서의 반응 온도에 따라 생성하였으며, 에너지수율 및 질량 수율을 고려한 최적의 반탄화 조건을 모색하였다. 본 실험 결과 왕겨 및 볏짚을 이용한 최적의 탄화물 생산조건은 반응 온도 250~300℃ 및 반응 시간 20~30분 경우로 나타났으나, 각각의 탄화물 수율 및 발열량의 차이가 확연하게 나타났다. 왕겨의 경우 약 73.5%의 탄화물 수율 및 약 4,320.0 kcal/kg의 탄화물 발열량이 분석되었으나, 볏짚의 경우의 탄화물의 수율 및 발열량은 각각 68.2% 및 약 4,547.7 kcal/kg으로 나타났다. 이러한 탄화물 생산 특성의 차이는 바이오매스 원료의 Lignocellulose 특성과 주로 관련된 것으로 예상되고 있으며, 이러한 연구 결과를 통해 폐바이오매스의 석탄발전 설비에서의 혼합 연소 방식으로 적용될 것으로 기대 된다.
3 kg/hr급 소용량 down draft 방식의 고정층 가스화기에서의 산화제 공급방식에 따른 비성형 고형연료(SRF, Solid Refuse Fuel)의 공기가스화 특성을 파악하였다. 공기단독, 공기와 스팀 혼합 및 산소부화 세 조건에서의 산화제 종류에 따른 가스화 특성과 공기를 산화제로 하여 산화제 주입 위치에 따른 가스화 특성을 살펴보았다. 가스화 특성을 살펴보기 위한 지표로 합성가스 조성, 합성가스 발열량, 냉가스효율 및 탄소전환율을 산정하여 사용하였다. 산소부하 가스화의 경우 주입되는 산소량은 동일하고 상대적으로 질소량이 감소하기 때문에 합성가스에 포함된 질소함량의 감소로 합성가스 발열량은 증가하게 된다. 그리고 스팀을 혼합하여 사용할 경우 주입된 스팀과 탄화수소 가스의 수증기 개질반응(CnHm + H2O → H2 + CO)에 의해서 H2와 CO농도가 증가하고 합성가스 발열량도 증가하게 된다. 또한 탄화수소 계열인 타르와 반응함으로써 타르 제거 효과를 가지는 것으로 보고된다. 또한 보조산화제를 적절하게 사용할 경우 합성가스 품질을 유지한 상태에서 로내 타르 제거효과가 있는 것으로 보고된다. 공기가스화와 비교하여 산소부화 조건의 경우 합성가스 발열량은 증가되었지만 냉가스효율 및 탄소전환율은 감소된 결과를 보였다. 보조산화제를 사용한 경우 합성가스 유량과 H2, CH4, CO를 포함하는 가연성가스의 농도가 증가하였고 이로 인해 냉가스효율과 탄소전환율도 증가하는 결과를 보였다.
폐기물을 이용한 가스화 공정을 통해 생성되는 합성가스는 적용하고자 하는 후단공정에 따라 적합한 품질을 얻기 위해 다양한 정제 설비를 거쳐 정제된다. 가스터빈을 가스화 시스템 후단 공정으로 적용할 경우 터빈의 블레이드가 마모되지 않기 위해서 합성가스 내 입자상 물질의 입자사이즈는 5 μm 이하까지 제거되어야 한다. 따라서 합성가스 내 입자상 물질들을 제어하기 위해서는 각 정제 설비에서 발생하는 입자상물질 또는 정제설비에서 제거된 입자상물질들의 입자 사이즈에 대한 분석이 필요하다. 본 연구에서는 pilot scale의 폐기물 가스화 시스템 내의 세정 설비에서 발생하는 폐수 내 존재하는 입자상물질의 입자사이즈를 비교함으로써 각 세정설비의 특징을 파악하고, 더 나아가 각 설비에서 제거된 입자상물질의 입도 거동을 통해 상용규모 단계까지 scale-up 하였을 때 세정설비에 대한 성능을 예측할 수 있다. 가스화공정에서 발생한 합성가스 내 입자상 물질은 분진제거탑, 중화세정탑 그리고 습식전기집진기를 통과하여 대부분의 입도가 큰 물질은 제거되었다. 입도분석 결과 가스화로에서 발생한 입자상 물질의 입자사이즈는 24.0 μm 이며, 분진세정탑에서는 23.0 μm, 중화세정탑은 14.2 μm 그리고 습식전기집진기에서는 12.8 μm의 입자상 물질을 제거하는 것으로 분석되었다. 이러한 분석 결과를 바탕으로 pilot 규모의 폐기물 가스화 시스템에서 생성된 합성가스는 사이즈가 큰 입자상 오염물질이 대부분 제거되어 가스터빈이나, IC engine에 후단공정으로 활용이 가능함을 확인할 수 있다.
폐기물, 바이오매스를 원료물질로 하여 전기를 생산하는 시스템은 화석연료를 대체하고, CO2 배출을 저감시킬 수 있는 기슬로 평가되고 있어, 기술의 적용에 대한 관심이 매우 집중되고 있다. 아직도 인도를 포함한 남부아시아 지역 국가에서 거주하는 인구의 40% 이상의 사람들에게는 전기 사용 접근이 제한되거나 매우 어려운 것으로 알려져 있다. 따라서 폐기물, 바이오매스 가스화를 기반으로 하는 전기 생산 시스템은 이러한 국가의 지역사회에 전기를 공급할 수 있는 적절한 대안이 될 수 있는 것으로 평가되고 있다. 본 연구에서는 Pilot 규모에서 폐기물을 이용한 공기 가스화를 통해 생산된 합성가스를 연료로 이용하여 가스엔진과의 연계를 통해 전기를 생산하는 시스템을 개발하였다. 가스화기 상부에서 폐기물을 투입하고 산화제인 공기는 가스화기 측면에서 투입하였으며, 반응된 가스는 하부로 배출되는 하향식 고정층 방식의 장치를 이용하여 가스화에 의한 합성가스 생산하고 이를 가스엔진의 연료로 사용하였다. 합성가스 엔진은 주파수 60Hz, 회전수 1,200rpm, 최대출력 20kW급의 사양을 가진 것을 이용하였다. 가스엔진 운전 초기에는 원료 합성가스의 일부만을 유입하여 가동을 실시하였고, 안정하게 유지시 전량을 유입하여 가스엔진을 가동하였다. 합성가스의 조성은 CO 9.8 ~ 15.2%, H2 6.8 ~ 10.9%, CH4 3.4 ~ 4.7%으로 나타났으며, 30.2 ~ 34.6 Nm³/h의 합성가스를 유입하여 약 13.1 ~ 16.4 kW의 전기를 생산할 수 있었다.
국내 중・소규모 지자체의 중・소규모 생활폐기물 소각시설은 에너지 이용을 할 수 없거나, 에너지 회수율이 낮게 활용되고 있다. 중・소규모 생활폐기물 소각시설의 폐열보일러에서는 품질이 낮은 스팀을 생산하므로 스팀터빈을 적용한 경우에는 발전효율이 매우 낮으며, 대부분 생산 스팀을 활용할 시설이 없는 실정이다. 이러한 미활용 되고 있는 중・소규모 지자체에 적합한 고효율발전이 가능하고 열풍 또는 온수 이용이 가능한 폐기물 가스화 발전시설을 보급 가능성을 검증하기 위해 생활폐기물이 1일 50톤 정도 발생하는 지자체에 공기사용 생활폐기물 가스화 가스엔진발전플랜트를 구축하여 성능검증을 수행하고 있다. 본 연구에서는 30톤/일급 상용규모 고정층 공기사용 가스화로에서 생산된 합성가스를 가스엔진 발전시스템에 의해 전력생산량과 50톤/일급 가스화용 생활폐기물 전처리시설 및 가스화발전 시설의 소내 사용전력을 고찰하였다. 반입기준의 생활폐기물 50톤/일급 전처리 및 30톤/일급 가스화 발전 시설의 판매 가능한 전력량을 운전결과를 통해 고찰하였다. 공기사용 고정층 가스화 Pilot 시스템을 이용한 연구에서는 가스엔진 발전이 가능한 합성가스 생산을 위해서는 폐기물의 저위발열량을 3,500 kcal/kg이상으로 전처리 해야 하는 설계조건으로 도출되었다. 본 연구에서 사용한 50톤/일급 전처리시설을 이용하여 파쇄, 선별 및 탈수를 진행하였고, 건조는 진행하지 않은 전처리된 생활폐기물을 공기사용 가스화를 통행 생산된 합성가스를 이용하여 가스엔진 발전시스템에서 생산한 전력량은 약 800 kWe 이상 생산 가능함을 확인하였다. 또한 전체 소내전력 사용량은 약 250 kWe으로 전력판매량은 약 550 kWe로 도출되었다. 폐기물 가스화 발전의 경우 가중치가 1.0이므로 3,960 REC/yr 확보가 가능한 것으로 산출되었다.
폐바이오매스를 이용하여 Bio-SRF로 활용을 위해 제시되고 있는 반탄화(Torrefaction) 기술은 대표적인 신재생에너지 활용 방안으로, 원료의 공급 안정성 및 제한적 처리 방법으로 인해 각광받고 있다. 일찍부터 해외에서는 반탄화 기술을 통해 생성된 탄화물의 높은 적용성을 인지하여 상용규모의 기술 개발이 활성화 되어 있으며, 주로 활용 가능한 폐바이오매스가 많이 발생되는 유럽 및 북미 지역에서 활발하게 수행되고 있다. 반면 국내에서는 기존 폐바이오매스는 매립 위주로 처리되어오고 있으며, 최근에서야 폐바이오매스의 자원 인식 전환을 통해 적극적으로 기술개발사업에 노력을 기울이고 있는 추세이다. 이러한 생산된 반탄화물은 소수성 및 낮은 함수율로 인해 운송 용이성 확대와 더불어 고정탄소 성분의 증가에 따른 높은 에너지 밀도로 석탄발전 설비에서의 혼합 연소를 통한 활용이 기대되고 있다. 반탄화물은 무산소 조건 상에서 200~300℃의 반응 온도 영역에서 열분해 과정 중 폐바이오매스 내 함유된 수분 및 휘발분 제거를 통해 얻을 수 있다. 반면에 국내에서 시행되고 있는 Bio-SRF 기준은 탄화물을 에너지원으로 활용하는 측면에서 엄격하게 다뤄져 적용 가능한 폐바이오매스 종류가 한정적이다. 이러한 배경은 원료로 사용되고 있는 폐바이오매스 종류별 함유하고 있는 염소, 황분 및 회분 함량이 다양하며, 이러한 성분들은 향후 반탄화물이 적용 될 소각 및 가스화 시스템 내부 부식 등에 따른 연속운전 저해 요소로 작용이 가능하기 때문이다. 따라서 본 연구에서는 적용범위가 제한적인 폐바이오매스를 활용하여 Bio-SRF 규격을 충족시키는 반탄화물을 생산하기 위해 다수의 폐바이오매스의 혼합비율에 따른 반탄화물 특성을 검토하였다. 대상 원료로, 폐목재와 고품질 하수슬러지 및 저품질 하수슬러지별 반응 온도 및 반응 시간에 따라 생산된 반탄화물 특성 실험결과를 이용하여 Bio-SRF 기준을 충족시키는 원료의 최적 혼합비율을 도출하였다. 저품질 하수슬러지와 폐목재를 활용할 경우 습윤 기준 하수슬러지 60% 및 폐목재 40% 의 혼합비율이, 고품질 하수슬러지의 경우 습윤기준 하수슬러지 80% 및 폐목재 20%가 최적조건으로 도출되었다. 본 연구를 통해 처리 방법이 제한적인 폐바이오매스를 이용한 반탄화물 생산이 가능할 것으로 기대되며, 향후 폐바이오매스의 대상 범위를 확대를 통해 혼합 폐바이오매스를 이용한 반탄화물 기술 개발에 중요한 가이드라인으로 제시될 것으로 사료된다.
바이오매스 및 폐기물로부터의 합성가스 생산 기술 개발은 효율적인 에너지 생산 및 처리방법으로 각광받아오고 있다. 특히, 가스화 반응으로부터 생산되는 타르는 가스화 효율을 낮추고, 배관폐쇄에 따른 가스화 시스템의 연속운전 저해 요소로 작용하고 있다. 효율적인 합성가스 내 타르 저감 방안으로, 촉매를 활용한 수증기 개질 연구가 이루어져 오고 있다. 주로 수증기 개질 반응용으로 사용되는 Ni 계열의 상용 촉매는 높은 가격 및 낮은 열적안정성으로 인해 중금속 계열의 Fe 활용 연구에 관한 연구 결과가 보고되고 있다. 특히, 제련공정으로부터 생산되는 제강슬래그와 염색 산업단지에서 발생되는 염색슬러지의 주성분은 Fe로, 상용 촉매 대체 적용가능 여부를 판단하기 위해 타르 스팀 개질 특성을 확인할 필요가 있다. 본 연구에서는 제강슬래그의 비표면적 향상을 위해 고온 알칼리 처리를 하였으며, 염색슬러지의 활용을 위해 고온 소성 처리를 수행하였다. 전처리를 거친 각각의 시료는 타르의 대표 성분인 벤젠을 이용하여 다양한 반응온도 조건에서 촉매 성능 평가를 수행하였으며, 대조군으로 촉매가 없는 조건과 Fe계열의 상용촉매 상에서 수행을 하였다. 최대 활성을 나타내는 900℃에서 제강슬래그의 경우 상용촉매에 비해 약 15% 높은 촉매 활성을 나타내었으며, 염색슬러지의 경우 상용촉매와 동일한 활성을 나타내었다. 이를 통해, 상용 촉매를 대체 할 수 있는 폐자원을 활용한 타르 개질 공정에 적용함으로써 운전비용 절감과 자원재활용에 크게 기여할 것이라고 사료된다.
사업장에서 배출되는 폐기물은 음식물이 거의 없으며 액상의 경우 오니 또는 유기용제로 분류되어 지정폐기물로 따로 처리되고 있어 함수율이 비교적 낮다. 이러한 이유로 파쇄나 선별과 같은 비교적 간단한 전처리를 통해 효율적으로 재자원화가 가능하다. 이렇게 가공된 폐자원은 각종 산업설비의 보조연료로써 사용되기도 하며 기술적 선진국인 유럽과 일본에서는 전용 보일러가 도입된 발전시설의 연료로 사용될 수 있다. 최근에는 화석연료의 가격상승과 맞물려 화학원료의 생산단가 상승으로 이어지고 있으며 원가절감을 위한 화석연료의 대체에 폐자원의 활용이 효과적일 것으로 전망된다. 본 연구는 폐자동차를 재활용하고 남은 잔재물(ASR, Automobile Shredder Residue)과 폐기물 고형연료(SRF, Solid Refuse Fuel)를 제조하는 과정에서 발생되는 부산물을 가스화용융 시스템에 적용하였다. 폐기물의 종류와 투입 속도, 산화제 및 보조연료의 공급 조건의 변화에 따라 합성가스의 생산에 미치는 영향에 대해 고찰하였으며 사용된 폐기물의 발열량은 약 4,000 ~ 6,500 kcal/kg이었으며 가스화용융로의 반응 온도는 약 1,200 ~ 1,500℃의 범위에서 운전되었다.
가스화로에서 생산되는 합성가스를 이용한 메탄올 생산 공정은 고부가가치 연료화 기술로서 각광 받고 있다. 특히, 메탄올 생산에 적합한 H₂/CO비를 안정적으로 제공하기 위한 water gas shift(WGS) 반응은 합성가스내의 CO와 외부에서 공급된 증기와의 반응으로 인해 H₂와 CO₂의 농도가 증가하게 된다. 따라서 본 연구에서는 고발열량 폐기물 가스화를 통해 얻어진 합성가스를 WGS 반응을 통해 H₂/CO조성 제어를 함으로써 메탄올 전환 공정에 적용 가능한 운전조건을 도출해보았다. 본 연구에 사용된 WGS 촉매는 Fe₂O₃-Cr₂O₃을 구성성분으로 하고 있는 상용 촉매를 사용하였으며, 15 Nm3/h급 WGS 반응 장치를 이용하여 가스화로부터 발생된 합성가스를 활용한 WGS 반응 실험을 수행 하였다. 사용한 WGS 상용촉매는 H₂-TPR를 이용하여 400℃에서 환원에 의한 H₂흡수를 통해 환원 온도를 설정할 수 있었다. 본 실험 장치로부터 수행하여 얻어진 각 온도에 따른 CO 전환율은 대체로 실험실 규모 장치에서 수행한 WGS 반응 결과와 유사함을 알 수 있었다. 발열반응을 수반하는 WGS 반응 특성으로 인하여 안정적인 운용 및 최대 활성을 얻기 위한 반응 온도영역이 400~450℃임을 알 수 있었다. 최종적으로, 메탄올 전환 공정 조건인 H₂/CO조성이 2.0을 충족시키는 바이패스 비율은 0.23임을 도출 할 수 있었다.
바이오매스 가스화 반응으로부터 생성되는 타르는 가스화 효율을 낮추고 배관폐쇄에 의한 가스화 시스템의 연속운전에 대한 저해 요소로 작용한다. 효율적으로 합성가스 내 타르를 제거하기 위한 방안으로, 촉매를 활용한 수증기 개질 반응이 주목되고 있다. 특히, 수증기 개질 반응을 거친 타르는 합성가스 내 CO와 H2로 분리되어 더 높은 바이오매스 가스화 효율을 얻을 수 있다. 최근 Iron-based 촉매는 타르 분해 반응에 대한 효과가 보고되고 있으며, 열적 안정성이 우수하다고 알려져 있다. 본 연구에서는 Fe 성분을 함유하고 있는 염색슬러지의 회분을 이용하여 대표적인 타르 성분으로 알려진 벤젠의 수증기 개질 반응 특성에 대하여 알아보았다. 또한 최종적으로 촉매 활성을 잘 표현하는 Kinetic을 개발하였다. 염색슬러지 회분을 활용한 타르의 수증기 개질 반응은 weight hour space velocity(WHSV) 및 반응 온도에 대하여 수행 되었다. 염색슬러지 회분을 이용한 모사타르인 벤젠의 최대 분해 효율은 900℃ 조건에서 약 40%로 분석되었다. 상용촉매에 비해 분해 효율은 낮지만 폐기물 유래 촉매로서 추가비용이 들지 않고 공급량이 충분하기 때문에 접촉시간을 충분히 유지한다면 분해 효율은 더욱 증가할 것으로 기대된다. Kinetic 반응의 Power law model를 통해 측정된 벤젠과 수증기의 반응 차수는 각각 0.43과 0이었으며, 활성화 에너지는 187.6 kJ mol-1로 측정되었다.
화석연료 고갈 및 환경문제 해결을 위한 대체 에너지원 확보에 대한 연구가 여러 분야에서 활발히 진행되고 있다. EU의 경우 신재생에너지 보급률의 80% 정도를 바이오매스로 달성하고 있을 정도로, 바이오매스는 자원의 순환적 이용과 재생산 가능한 청정에너지원으로 주목을 받고 있다. 일반적인 바이오매스는 밀도가 낮고 함수율이 높기 때문에, 바이오매스를 펠렛화하여, 연료로 사용하는 방법이 주로 이용되고 있다. 물리적인 압축을 통해 밀도를 높인 펠렛의 발열량은 약 4,000kcal/kg 정도로, 일반연료유(휘발유)의 발열량인 8,000 kcal/kg의 약 50% 정도 수준으로, 에너지밀도가 높은 바이오매스 연료 생산이 필요하다. 반탄화(Torrfaction)는 반응온도 200~300℃ 범위에서 무산소 조건에서 일어나는 열화학적인 공정으로 부분적인 탈휘발화 반응 및 열분해 반응을 통하여 에너지 밀도가 높은 탄화물을 제조하기 위한 방법이다. 본 연구에서는 실험실 규모의 고정층 반응기를 이용하여 말레이시아에서 자생하는 바이오매스 중 Leucaena를 반응시간 30분인 조건에서 반응온도를 228, 266, 290, 315 및 350℃로 변화시켜 생성된 반탄화물에 대한 기초성분 및 SEM 분석 등을 통하여, 반응온도의 영향을 검토하였다.
바이오매스는 화석연료의 사용으로 인한 온실가스 및 에너지고갈 문제를 모두 해결 할 수 있는 탄소중립적인 에너지원으로서 주목을 받고 있다. 세계 2대 팜오일 생산국인 말레이시아의 경우 팜오일을 생산한 후 발생되는 농업부산물이 총 바이오매스의 85% 이상을 차지하는 것으로 알려져 있다. 2010년 말레이시아에서 발생되는 팜 바이오매스는 약 8,000만 톤이며, 2020년까지 약 1억1,000만 톤까지 늘어날 것으로 전망되고 있다. 하지만 발생량의 대부분은 소각 또는 매립이 되고 있는 실정이며, 일부만이 퇴비 및 펠렛으로 이용되고 있어 말레이시아 정부는 다각도로 활용방안을 모색 중이다. 국내의 경우, RPS(Renewable Portfolio Standard, 신재생에너지 공급의무화)제도의 시행으로 인한 대체에너지원 확보가 필요한 상황이지만, 국내 바이오매스는 지역 및 월별 발생량의 편차로 인하여 원료 수급 및 활용 등에 문제점을 가지고 있다. 해외로부터 낮은 밀도와 높은 함수율의 바이오매스를 수급할 경우 운송비가 전체비용의 40% 이상을 차지하므로, 에너지 밀도가 높은 바이오매스의 수급이 필요한 상황이다. 반탄화란 반응온도 200 ~ 300℃ 범위에서 무산소 조건에서 일어나는 열화학적인 공정이며, 부분적인 탈휘발화 반응 및 열분해 반응이 주반응인 공정으로, 바이오매스의 에너지 밀도를 증가시키는 공정이다. 본 연구에서는 간접가열방식의 1kg/h급 로타리킬른 반응기를 이용하여 EFB의 반탄화 특성에 대한 반응온도의 영향을 살펴보았다. 반응온도를 250, 270 및 300℃로 증가시킨 결과 가스와 액체 생성물의 수율은 증가하는 반면 고체생성물의 수율은 감소하는 것으로 나타났다.
순산소 가스화기로부터 발생한 합성가스는 분진, 황화합물, 염화수소 등의 오염물질을 포함하고 있기 때문에 후단공정에서 합성가스를 화학원료로 사용하기 위해서는 적절한 정제시스템을 통한 오염물질의 정제가 필요하다. 본 연구에서는 급속냉각탑, 분진세정탑, 중화세정탑 및 탈황세정탑으로 구성된 합성가스 정제설비로부터 발생한 합성가스 정제폐수의 적정 처리공정 구성을 위한 정제폐수의 여과, 응집, 침전 및 탈수 특성을 분석하였다. 본 연구에 사용된 합성가스 정제폐수는 다량의 부유물질(940 mg/L)을 함유하고 있으며, 이는 규조토코팅 여과를 통해서 2 mg/L 이하로 제거가 가능한 것이 확인되었다. Polymer, Alum, PAC, FeCl₃ 총 4가지의 응집제중 Polymer를 사용한 경우가 가장 높은 응집율을 보였으며, 또한 폐수 원액의 pH를 총 세 가지 조건으로 조절하여 침전특성을 분석한 결과 침전 시간 약 30분 경과 후 부유물질의 침전 상태를 확인할 수 있었다. 그리고 실험 조건별 규조토코팅 여과기에서 발생한 탈수 슬러지와 탈수액의 성분을 분석한 결과 탈수 슬러지의 경우는 철의 함량이 그리고 탈리액의 경우는 인의 함량이 높게 나타났다.
전 세계의 에너지 수요 증가로 인한 원유 가격의 상승과 화석연료 대체를 위한 신재생에너지 사용에 대한 각국의 인센티브 효과로 인하여 바이오매스와 같은 신재생 에너지의 수요가 상승할 것으로 예측된다. 국내의 경우 신재생에너지 공급의무화 제도인 RPS (Renewable & Portfolio Standards) 제도를 2012년부터 도입하여 500 MW 이상의 발전소는 총 발전량에 대한 신재생에너지를 사용한 전력공급율을 2012년 2%를 시작으로 2022년까지 10%로 실시할 계획이다. 현재 바이오매스 전소발전과 혼소발전에 대한 RPS 가중치가 각각 1.5와 1.0으로 해상풍력, 조력 및 연료전지 다음으로 높기 때문에 고열량이면서 에너지 밀도가 높은 바이오매스 연료의 개발이 요구된다. 반탄화는 반응온도 200 ~ 300℃ 범위의 무산소 조건에서 일어나는 바이오매스의 열화학적 전처리 공정으로 반탄화를 통해서 원래의 바이오매스가 지닌 질량의 70% 정도가 탄화물의 형태로 남고 이 탄화물은 초기 에너지량의 90%를 보유한다. 본 연구에서는 팜 오일 생산공정에서 발생하는 부산물중 하나인 EFB(Empty Fruit Bunch) 및 국내에서 생산된 왕겨를 사용하여 200 kg/hr급 Pilot 규모의 연속식 로타리 킬른 반응기에서의 반탄화 특성을 비교・분석하였다. 특히 사용 원료별 생성물의 수율 및 특성 분석을 통한 전체 시스템의 물질수지와 열수지 결과를 바탕으로 하여 전체 시스템의 에너지 이용 효율을 분석하였다.
가스화는 산소가 불충분한 상태에서 폐기물, 바이오매스와 같은 원료물질에 열을 가하여 가연성 가스(합성가스)로 발생시키는 열화학적 전환 공정이다. 합성가스는 주로 CO, H₂ 성분이 혼합되어있다. 중・소규모의 폐기물, 바이오매스 가스화 시스템은 합성가스를 생산하여 열과 전기를 생산하는데 이용한다. 그러나 천연가스나 석탄을 이용한 합성가스 생산 공정에서는 이미 고부가가치의 액체 연료를 생산하는 공정이 상업운전 중에 있다. 국내에서도 납사 및 중유 가스화를 통해 합성가스를 생산하여 초산, 수소 등의 고부가가치 물질을 생산 중에 있다. 본 연구에서는 초산 제조공정에서 원료물질로 이용하는 CO를 폐기물 가스화를 통한 합성가스 내의 CO로 대체하고자 하는 시스템을 개발하고자 한다. 고정층 방식의 가스화 용융로에 U지역 사업장 폐기물을 원료물질로 하고 산화제는 산소를 이용하여 가스화 실험을 실시하였다. 수분 14.6%, 가연분 58.4%, 회분 27.0%, 저위발열량 3,158 kcal/kg의 특성을 가지는 U지역 사업장 폐기물을 이용한 결과 합성가스의 CO+H₂의 농도가 60% 이상 안정적으로 생산되는 것을 확인할 수 있어, 가연성 가스를 고부가가치 화학원료로 이용할 수 있을 것으로 판단되었다
폐기물을 이용한 가스화 공정은 이론적으로 요구되는 산화제의 양보다 적은 양의 공기를 이용하여 환원분위기에서 흡열반응에 의해 합성가스를 생산하며 이와 동시에 폐기물의 열적처리 개념도 포함된다. 가스화 공정에서 발생되는 각종 오염물질은 후단 공정에 구성된 정제설비에 의해 제거되며 고품질 합성가스의 생산을 위해 가스화 반응기 후단의 정제설비는 벤츄리스크러버, 중화세정탑, 탈황세정탑, 습식전기집진기, 활성탄흡착탑으로 구성되었다. 전체 정제설비의 총괄효율을 분석하기 위해 시료 가스는 가스화 반응기 후단과 활성탄흡착탑 후단에서 채취되어 분석되었으며 시료 채취방법은 대기오염공정시험방법을 참조하였다. 본 연구에서는 환원성 가스상 오염물질 중에서도 맹독성 물질인 HCN과 악취물질인 NH₃에 대한 정제설비에서의 제거 효율을 분석하였으며 대기배출허용기준 초과 여부를 판단하였다. HCN의 대기배출허용기준은 모든 시설에서 10 ppm 이하이며 본 실험에서의 제거 효율은 99%, 배출농도는 2.5 ppm으로 나타났다. NH₃의 대기배출허용기준은 30 톤/일급 설비를 기준으로 30(12) ppm이며 실험결과에서 제거효율은 95%, 배출농도는 8.90(12) ppm으로 분석되어 Pilot 설비에 구성된 정제설비는 HCN과 NH₃의 제거에 적합한 것으로 나타났다.
에너지 소비량 증가 및 국제 유가 상승으로 인해 대체에너지 개발의 중요성이 더욱 증가하고 있으며 염색슬러지의 경우 육상 매립 금지 및 해양배출 규제 정책의 강화로 인해 새로운 처리방안이 요구되고 있으므로 이에 대한 해결책으로 가스화 기술 등을 적용할 수 있다. 해양투기가 금지되는 연간 50 만톤 가량 발생되는 염색슬러지를 가스화 원료로 활용할 경우 처리비 약 240억 원을 절약할 수 있고 연간 약 6만 TOE의 화석연료 대체 효과가 있다. 가스화 기술은 유기성 슬러지에 포함된 유기물질을 CO와 H₂가 주성분인 합성가스로 변환시키고 가스화를 통해 생성된 청정 합성가스는 고온고압화가 가능하기 때문에 폐압 터빈을 적용함으로써 수요처의 특성에 따라 전기 및 스팀을 생산 할 수 있다. 또한 염색슬러지의 경우 폐수처리 과정에서 응집제의 사용으로 인해 산화철 성분을 포함하고 있으므로 처리대상물질 자체가 함유하고 있는 촉매성 물질인 고농도 산화철을 회수하여 타르 개질 촉매로 활용함으로써 타르의 생성량을 저감시킬 수 있고 고가의 촉매를 대체함으로써 경제성을 확보할 수 있으며 합성가스 생산 품질에 영향을 미치는 중요 인자인 오염물질을 제거함으로써 가스화율을 증가시킬 수 있을 것으로 판단된다. 본 연구에서는 염색슬러지와 왕겨 혼합물을 대상 시료로 하여 2톤/일급 가스화 설비를 이용하여 1단 버블유동층(BFBG)방식을 적용하여 가스화 실험을 수행하였으며 발생되는 합성가스 농도 측정 및 오염물질 분석을 통해 합성가스 생산 특성 및 오염물질 배출 특성을 파악하였다. 실험 결과 합성가스 조성별 평균 가스 농도는 H₂ 7.8%, O₂ 0.4%, N₂ 59.5%, CH₄ 2.1%, CO 11.4%, CO₂ 14.8%, C₂∼C₄ 2.1%로 나타났으며 평균 탄소전환율과 냉가스효율은 각각 72.6%와 49.8%로 나타났다. 또한 오염물질 제거 특성을 파악한 결과 타르 제거효율은 95.9%, 분진 제거효율은 99.7%로서 안정적인 연속운전이 가능하였다.
세계적으로 에너지 수요량의 증가하고, 화석연료 고갈 및 지구온난화 대응 등 문제로 바이오매스 가스화를 통한 에너지 자원 개발이 이슈화 되고 있다. 일반적으로 바이오매스 가스화 공정에서 발생하는 타르는 가스화기 후단 설비 혹은 배관에 부착되어 배관 폐쇄에 따른 운전 정지와 가스화 전체 시스템 효율 저하의 주요 원인이 되고 있다. 이와 같은 타르 부착문제를 해결하기 위한 타르 개질용 촉매 대부분은 귀금속계로 고가일 뿐만 아니라, 탄소 침적에 의한 불활성 문제가 있으나, 산화철은 가격이 저렴하고 탄소 석출량이 적으며 열화가 잘 일어나지 않는 유기물 분해 촉매로 주목받고 있다. 육상직매립 및 해양투기가 금지된 염색슬러지 회재 중 약 70%는 산화철 성분이여서 타르개질 촉매로 충분히 활용 가능한 것으로 알려져 있다. 본 연구에서는 염색슬러지 혼합 유기자원 저온가스화 공정특성을 파악하고자 가스화 및 염색슬러지 내 철 촉매를 이용한 타르개질 공정 모사 모델을 구축하여 혼합 유기자원의 종류 및 운전조건 변화에 따른 합성가스 생산 특성을 고찰하였다. 왕겨, 타르 및 폐플라스틱을 염색슬러지와 각각 혼합한 시료의 가스화 공정 모사 결과 폐플라스틱을 혼합한 경우의 합성가스 발열량이 가장 높은 것으로 나타났다.