In our previous studies, the cardiac xenotransplantation from an alpha-1,3-galactosyltransferase knockout pig (GT-MCP-MCP) to cynomolgus monkeys showed a mean survival of 38 days. The objective of this study is to genetically upgrade the GT-MCP-MCP pig, to further enhance membrane cofactor protein (MCP) expression and to express an endothelial specific thrombomodulin (TBM). MCP is a complement regulatory protein and TBM is a coagulation inhibitor. As the dicistronic cassette for wild-type-based MCP and TBM concurrent expressions does not show any increase of MCP, we optimized the MCP codon usage (mMCP) and substituted mMCP for MCP. When the mMCP-TBM cassette was transfected to HeLa cells, we were able to find an increased expression of MCP and endothelial cell-specific TBM expression. The cassette was then transfected into ear-skin fibroblasts isolated from one-month-old #23-4 of a GT-MCP-MCP pig, and the cell populations expressing MCP were obtained by MACS cell sorting. We performed a single cell culture of the selected cells, and obtained clones over expressing 90% MCP. The cells of a clone were used as a donor for nuclear transfer and generated GT-MCP/-MCP/mMCP/TBM pig. The transgenic pig was confirmed to be carrying the cells expressing MCP and functioning as an inhibitor against the cytotoxic effect of normal monkey serum, comparable with donor cells. Thus, we believe that the GT-MCP/-MCP/mMCP/TBM transgenic pig would be potential for the prolongation of xenograft survival in the recipients.
The objective of this study was to identify the proteins actively involved in the protection and repair of damaged cells, secreted by canine adipose derived mesenchymal stem cells (AT-MSCs) into the conditioned media. For this purpose, conditioned media (CM) was recovered from passage three stage canine AT-MSCs and skin fibroblasts cultured in serum free media after 24, 48 and 72 h. The extraction of exosomes was performed from 10-20 ml of CM using total exosome isolation kit. The isolated exosomes were then subjected to western analysis for the identification of annexin-I, annexin-II, histone H3 and dysferlin proteins. Results demonstrated the expression of proteins in the conditioned media isolated from canine AT-MSCs reflecting their potential in reducing the extent of damage at cellular levels. In conclusion, the conditioned media derived from canine AT-MSCs can be helpful in restoring the normal structure of cells both in vivo and in vitro conditions.
Tumor necrosis factor receptor associated factor 4 (TRAF4)는 TNF receptor associated factor 군의 하나로 암세포 전이, 활성산소 생성, 세포극성에 관여한다. 쥐 배아발생의 8.5 에서 13.5 days post-coitum 시기에 TRAF4 의 발현이 높게 관찰된다. 세포 특성의 변화를 보이는 상피간엽이행(EMT)시에 TRAF4 가 세포막의 세포밀접에 위치하는 것으로 알려져 세포분화가 시작되는 배 발생 시에도 주요한 역할을 할 것으로 여겨진다. 하지만 돼지에서는 TRAF4 의 기능과 특성에 대한 연구가 미비하다. 본 연구는 돼지 TRAF4 의 mRNA 전장서열과 조직에서의 발현을 확인함으로써 TRAF4 의 특성에 대한 정보를 제공할 것이다. TRAF4 mRNA 의 전장 서열을 밝히기 위해서 돼지 신장유래세포(pK15)에서 total RNA 를 추출하여 RACE(Rapid Amplification of cDNA ends) PCR 이 수행되었다. 이 후 클로닝을 통해 얻은 암호영역, 5`UTR, 3`UTR 의 서열로 2,030 염기쌍의 mRNA 전장서열을 확인하였다. 조직에서 TRAF4 의 발현은 qPCR 로 상대정량되었다. 돼지 TRAF4 는 470 개의 아미노산을 지정하는데 이는 사람과는 8 개, 쥐와는 12 개 차이를 보였다. TRAF4 단백질의 TRAF 도메인은 다른 TRAF 군과 다르게 GTWRGS 의 고리를 가지는데 돼지에서도 동일한 서열이 확인되었다. 돼지에서 TRAF4 는 난소와 위에서 상대적으로 높은 발현을 보였다. TRAF4 의 mRNA 서열은 돼지의 TRAF4 에 대한 기초정보가 될것으로 여겨진다.
In the present study of this experiment was to understand the expression of apoptotic gene expression in the ovary of miniature pigs and pigs on the 15th day of estrus. Also the compare and analyze of programmed cell death type(Apoptosis and autophagy) expression pattern during mature oocyte on the miniature and normal pig cells. Analysis of mRNA gene expression of ovary in miniature and normal pigs on the 15th day of estrus showed that the expression of genes related to Autophagy (ATG13, MAP1LC3, Beclin1) was high in normal pigs but the expression of ATG1 and ATG5 genes was low. In addition, the expression of genes related to apoptosis (Casp-3, BAX) was high in the mini pigs, and the gene related to the LH hormone was high in the miniature pigs, whereas the expression of the gene related to the FSH hormone was high in the normal pigs. On the other hand, the result of muture oocyte on the miniature and normal pig cells is the expression of Casp-3 protein was moust high from treatment of FL+rapa (FSH+LH and Rapamycin) of the oocyte on the miniature pig cell. However, MAP1LC3 expression was higher in the oocytes of treatment of rapanycine treatment on the nomal pig cells. There was no gene expression in cumulus cells of matured oocytes in mini pig cells, whereas MAP1LC3 expression was higher in oocyte cumulus cells matured in normal pig cells. It was confirmed that the miniature and normal pigs showed different programmed cell death patterns, In the case of oocytes matured in miniature pig cells, MAP1LC3 gene expression was found to be low in spite of treatment with Autophagy regulator.
Poor embryo quality and low blastocyst formation have been major limitations in establishment of cloned embryonic stem cells and production of cloned animals through somatic cell nuclear transfer (SCNT). Aggregation of embryos is a promising method for improving developmental competence of blastocysts. The aim of this study was to improve the blastocyst formation and the quality of parthenogenetic (PA) pig embryos by the aggregation of blastomeres at the 4-cell stage that were cultured in various type of culture dishes with or without phytohemagglutinin (PHA). The PA embryos were produced by the general method of our laboratory. On Day 2 after PA, the zona pellucida of 4 cell-stage embryos were removed by treatment with 0.5% (wt/vol) pronase solution. The 3x zona-free blastomere (ZFB) were randomly distributed in each of the following treatments for aggregation. ZFB were cultured for 5 days at 39℃ in an atmosphere 5% CO2, 5% O2, and 90% N2. In Experiment 1, effect of culture dishes on the aggregation efficiency and developmental competence of PA embryos were investigated. ZFB were cultured on non-coated (control) culture dish or dishes coated with 1% (wt/vol) agarose substrate (AS) or Well of the Well in dishes coated with 1% (wt/vol) agarose substrate (WAS). The ZFB cultured in WAS showed significantly higher (P<0.05) aggregation (81.2%) than AS and control (21.6-45.5%). The mean cell number in blastocysts derived from AS and WAS (81.4-89.3 cells/blastocyst) was significantly higher (P<0.05) than that of control (63.8 cells/blastocyst). In Experiment 2, effects of 150 ug/ml PHA treatment on the aggregation efficiency and developmental competence of embryos were investigated. The ZFB cultured in AS with PHA showed a higher (P<0.05) aggregation rate (90.0%) than that in AS without PHA, control with PHA, and control (39.2%, 57.9% and 17.5%, respectively). In conclusion, aggregation of porcine ZFB treated with PHA and agarose substrate could be a useful technique for producing improving blastocyst development with increased mean cell number of blastocysts in pigs.
Mitochondrion is an organelle for regulating calcium (Ca2+) homeostasis. Mitochondrial Ca2+ plays important roles on oocyte maturation, fertilization and embryonic development for ATP production. Low quality oocytes have mitochondrial dysfunction, which lead to overloaded Ca2+ in mitochondria. Recently, Rhod-2 is well known as a mitochondrial derived Ca2+ indicator. However, the changes of Rhod-2 in matured or fertilized porcine oocytes have not been reported. Therefore, the aim of study was to identify the effects of mitochondrial Ca2+ using Rhod-2 on quality assessment of matured oocyte and zygotes in pigs. Thus, we classified two groups (group 1: G1, compact COCs and group 2: G2, uncompact COCs) according to differences of cumulus cells amount and cytoplasm morphology in germinal vesicle (GV) stage of porcine COCs. Therefore, we investigated number of Rhod-2 spots in matured and fertilized oocytes from G1 and G2 groups. The Rhod-2 spot numbers were separated into four parts; n<10, 10≤ n < 20, 20 ≤ n < 30, and 30 < n. The Rhod-2 spots number of G2 group had greater than G1 group in part of 20 ≤ n. Additionally, we investigate mean number of Rhod-2 spots from G1 and G2 groups in matured and fertilized oocytes. As a result, we confirmed that average number of Rhod-2 spots in G2 group increased than that of G2 group. Finally, we also measured the Rhod-2 intensity in matured and fertilized oocytes of G1 and G2 groups. Interestingly, the Rhod-2 intensity in G2 group was higher than that of G1 group. (oocyte: p < 0.001 and fertilized oocyte: p < 0.05). These results demonstrated that changes in Rhod-2 spots and intensity were increased in low quality of matured and fertilized oocytes. Therefore, our results suggest that the differences in mitochondrial calcium level are associated with morphological quality of porcine COCs.
본 연구는 혈통이 확인된 한우 암소의 체중과 월령에 따라 난소에서 난포의 분포 양상을 확인하고, 체외성숙배양 배지가 채취된 미성숙 난자/난구세포의 배양시 분할율에 미치는 영향을 확인하고자 수행하였다. 도축장에서 도축된 암소들의 혈통, 생체중, 및 월령을 기준으로 적출된 난소를 분류한 후, 난소 모양, 황체, 백체 및 난포액 분포 양상을 확인하였고, 개체별 한우 난소에서 18G 주사침이 장착된 5ml 주사기를 이용하여 난자를 채취한 후, 실체현미경으로 관찰하여 난구세포가 난자주변을 둘러싸고 있는 난자를 회수 하였다. 회수한 미성숙난자를 25mM HEPES 와 10% FBS 가 첨가된 TCM-199 으로 옮겨 2~3 회 세정한 후, follicle stimulating hormone(FSH, Sigma) 0.5 μg/ml, luteinizing hormone(LH, Sigma) 0.5μg/ml, β-estradiol(Sigma)1μg/ml 가 첨가된 미성숙 난자의 체외성숙배지 BO, TCM199, 및 IVMD101 를 각각 사용하여 22 시간 동안 38.5℃, 5% CO2 배양기에서 성숙시켰다. 동결정액은 동일한 보증씨수소 정액을 37.5℃에서 30 초간 융해 하였으며, 최종 정자에는 IVF100 을 첨가하여 각각의 정자 droplet 에 난자들을 38.5℃, 5% CO2 조건의 배양기에 5~6 시간동안 체외수정 하였다. 연구 결과, 무혈통 번식 한우의 체외성숙 배지별 분할율은 BO 배양액에서 23.99%였고, TCM199 에서 47.99%, IVMD101 에서 40.04%로, BO 가 가장 낮았고 TCM199 가 높은 경향을 나타냈다. 개체별 체중에 따른 난자의 체외성숙 배지별 분할율은 480kg 미만의 경우, TCM199 에서 72.73%였고, IVMD101 에서 33.77%로 TCM199 이 월등히 높았다. 480-639kg 의 경우, TCM199 에서 50.05%였고, IVMD101 에서 55.11%로 IVMD101 가 높았으나 비슷한 양상을 나타냈다. 640-699kg 의 경우는 TCM199 에서 65.38 %였고, IVMD101 에서 47.92%로 TCM199 가 높았으며, 700kg 이상의 경우에는 TCM199 에서 61.75%, IVMD101 에서 55.63%로 TCM199 가 더 높게 나타났다. 개체별 월령에 따른 난자의 체외성숙 배지별 분할율은 39 개월 미만의 경우, TCM199 에서 62.41%, IVMD101에서 50.00%로 TCM199 이 높았고, 39-50 개월미만의 경우에는 TCM199 에서 51.22%, IVMD101 에서 49.89%로 TCM199 이 더 높은 경향을 보였다. 50 개월 이상의 경우에는 IVMD101 에서 57.40%로 TCM199 에서 52.25%보다 높게 나타났다. 결과적으로 체중별로 채취된 난자는 TCM199 에서 분할율이 높았으며, 월령별로 채취된 난자는 50 개월이상의 경우 IVMD101 에서 분할율이 높았으나 39-50 개월미만과 39 개월미만의 경우 TCM199 에서 분할율이 높아 다른 경향을 보였다. 본 연구결과를 바탕으로 체중, 월령 및 배양 배지에 따라서 분할율의 향상과 이때 발현되는 번식형질 유전자의 발현에 관한 연구가 필요할 것으로 사료된다.
In our previous study, exogenous plasminasminogen activators (PAs) influenced to fertility of boar spermatozoa via reduction of zona pellucida (ZP) resistance against protease and number of sperm binding ZP. plasminasmin (plasmin), is converted by PAs, is an important enzyme to degrade extracellular matrix and it is closely associated with fertilization process. Therefore, the aim of present study was to confirm changes of sperm penatration and ZP solubility by plasmin during in vitro fertilization (IVF). The cumulus-oocyte complasminexes (COCs) were aspirated from the antral follicles 3-6 mm in diameter and matured for 44 hours. Then, the cumulus cells were removed and denuded oocytes were co-incubated with spermatozoa for 18-20 hours in IVF medium containing 100 ng/ml plasmin. The number of sperm binding ZP and ZP solubility were measured using hoechst 33342 and 0.5% (w/v) pronase, respectively. Aceto-orcein stain was used to assess fertilization parameters. In results, sperm penetration did not affect by plasmin treatment during fertilization. Hoewever, treatment of plasmin decreased monospermic fertilization and IVF efficiency compared with control group (p<0.05). Furthermore, the number of penetrated sperm and pronucleus formation per zygote in plasmin group was significantly increased compared with control group (p<0.05). Despite of reduced monospermic fertilization by plasmin treatment, the number of sperm binding ZP was significantly higher in non-treated zygote than plasmin-treated zygote (p<0.05). Similar with previous study, ZP digestion time was reduced by plasmin treatment (p<0.05). These findings shown that plasminasmin during fertilization enhance the penetration of spermatozoa into ZP via increasing of ZP solubility and it was correspond with our previous results that fertility of spermatozoa during IVF was increased by exogenous urokinase-type PA treatment via sperm-ZP binding and increase of ZP solubility. Therefore, during the fertilization process, plasmin that is converted by PAs from oviduct epithelial cells might be closely associated with degradation of ZP proteins for penetration of sperm. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education) (2016R1D1A1B03931746).
The national natural monument of Korea, Jeju Black Cattle (JBC), it is a native species with unique blood line. This cattle breed needs mass production and industrialization to further improve and preserve their characteristics. This study was to examine whether there were differences in in vitro developmental rates according to body weight (<300, 300 ~ 350, 350 ~ 400 and >400 kg) and grade (1++, 1+, 1, 2 and 3), and oocyte donors or non-donors. As a method of IVM, groups of ten cumulus oocyte complexes (COCs) were cultured in 50 μl droplets of maturation medium (TCM199 supplemented with 10% FBS, 0.2 mM sodium pyruvate, 1 μg/ml follicle-stimulating hormone, 1 μg/ml estradiol-17β) under mineral oil at 38.8℃ in an incubator with a 5% CO2 atmosphere for 22 to 24 h. For IVF, 44 ul IVF drop contained 10 oocytes with sperm concentration of 1 × 106 cells/ml, and then 2 μl heparin and 2 μl PHE (20 μM peicillamine, 10 μM hypotaurine, 2 μM epinephrine) were added. For IVC, after 44±2 h of incubation, cleaved embryos were incubated in CR1aa medium containing 3 mg/ml FAF-BSA until day 4 at 38.8℃ in a 5% CO2 incubator. Embryos were then cultured in CR1aa medium containing 10% FBS until day 8. As a result, in vitro development rates were the highest in 350 ~ 400 kg body weight group and in 1++ grade group than other groups (p<0.05). However, there was no difference in in vitro developmental capacity of classified donor and non-donor oocyte groups. This result demonstrated that the better in vitro developmental capacity was obtained in high level originated oocyte groups (350 ~ 400kg, 1++ grade) than in others, while there was no different in donor types.
Alpha-linolenic acid (ALA; n-3 18:3), a one of omega-3 fatty acid, is mainly contained in chloroplast of plant and ALA is an essential fatty acid, not synthesized in mammalian body, it must be supplied from foods. Polyspermy is especially high on in vitro fertilization (IVF) in pigs, which is a major obstacle to in vitro embryo production systems. In our previous study, when ALA was supplemented during in vitro maturation (IVM), the methaphase-II rate and gluthathione level was increased. The objective of this study was to evaluate the effects of alpha-linolenic acid (ALA) supplementation during IVM and subsequent of IVF in pigs. The cumulus-oocyte complexes (COCs) were submitted to IVM medium containing 0, 25, 50, and 100 μM ALA for 44 h. After 44 h of IVM, denuded oocytes were co-cultured with spermatozoa during 18 h. After 18 h of in vitro fertilization, oocyte were using aceto-orcein method, to evaluated penetration rate, monospermy (number of monospermy oocytes/total oocytes), and the IVF efficiency (number of monospermy/total penetrated oocytes). In results, 25 and 50 μM ALA groups were significantly increased on penetration rate compared with 100 μM ALA group (p<0.05). Similarly, monospermy rate were significantly increased 25 and 50 μM ALA groups than control group (p<0.05). IVF efficiency was no significant difference between control and ALA treatment groups. Our findings suggested that treatment of ALA supplementation during in vitro maturation (IVM) and subsequent of in vitro fertilization in pigs, ALA can increase IVF efficiency by effectively blocking polyspermy and increasing monospermy some mechanism in porcine oocytes. However, the study of mechanism by which ALA blocks polyspermy are needed, and this study suggests that ALA has a positive effect on in vitro production of porcine oocytes by decreasing polyspermy. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education) (2016R1D1A1B03931746).
The expression of MMPs in the development of the fertilized egg has a very important role in cell configuration. Objective To evaluate the clinical, the effect of differentially expressed MMPs on serum and serum - free medium on the maturation of blastocysts. The expression patterns of MMPs in serum and serum-free medium were compared at 6 h, 18 h and at the blastocyst stage using real-time PCR, ELISA and immunofluorescence. The results showed that the expression of MMPs was increased in the embryos of the serum medium, as a result of analysis of MMPs and TIMPs, MMP-2 was expressed in the cytoplasm of embryos in the serum-free medium, And it was found to be higher in expression than MMP-9. The serum medium was different from the bloodless badge: overall, TIMPs showed a higher expression in the ovarian cells than cyanosis, and TIMP-3 was more pronounced. Development rate of blastocyst according to in vitro culture method was higher than that of serum - free medium (61.22% 60/98) and serum - free medium (48.28% 28/58). Analysis of the protein release locations of MMPs and TIMPs showed that MMPs and TIMPs are highly expressed in serum mediums, focusing on the inner cell mass. However, very low expression appeared in the tropoblast. On the other hand, serum - free medium showed different expression from serum medium and TIMPs expression was generally low.
Therefore, in the case of serum media, the expression of MMPs is highly expressed in the cytoplasm of the fertilized egg, increasing the reconstruction of cells.
In this study, we examined sperm penetration and blastocyst developmental rate of oocytes to determine fertilizability of cauda epididymal spermatozoa in Hanwoo bull. One testicle with epididymides were castrated from one Hanwoo bull (14 months of age) and transported to laboratory. Spermatozoa recovered from cauda epididymis by mincing with semen extender (Optixcell, IMV, France) and cryporeserved in liquid nitrogen tank until use. As control, frozen Hanwoo semen was used. Cumulus oocyte complexes (COCs) were collected from follicles (2-8 mm) of slaughtered ovaries and 10 to15 COCs were matured in 50μl droplet with M-199 media supplemented with 10% fetal bovine serum, 10μg/ml FSH, 10μg/ml LH, 10μg/ml EGF for 22 to 24 hours in a humidified atmosphere of 5% CO2 in air. After maturation of COCs, matured COCs were co-incubated with cauda epididymal spermatozoa in 100μl droplet in modified Brackett and Oliphant media supplemented with 2.5 mM theophylline for 12 or 18 hours under 5% CO2 in air. Sperm concentration was adjusted to 5 × 106cells/ml. After IVF for 18 hours, presumptive zygotes were cultured in modified synthetic oviductal fluid with 1mM glutamine, 12 essential amino acids, 10 μg/ml insulin under 5% CO2, 5% O2 in air. In experiment 1, we examined sperm penetration rate at 12 hours of IVF of frozen-thawed epididymal sperm. Total penetration rate among cauda epididymis and control were not significantly different (mean±standard error, cauda epididymis and control vs. 49.7±11.3 and 54.4±12.8%) In experiment 2, cleavage and blastocyst development rate were evaluated at day 2 and day 8 after IVF for 18 hours. Cleavage rate among cauda epididymis and control was similar different (cauda epididymis and control vs. 81.2±3.4 and 82.7±2.5%). However, blastocyst developmental rate of cauda epididymis group was significantly higher than that of control group (cauda epididymis and control vs. 24.4±1.6 and 12.2±2.8%, p<0.05). In conclusion, cauda epididymal spermatozoa in Hanwoo bull has high fertilizability and embryo development. Cauda epididymal sperm can be used as an alternative to ejaculated frozen sperm in vitro.
Mammalian fetal ovaries contains numerous primordial germ cells, however fewer ones can yield mature oocytes due to apoptosis and follicle atresia. Successful in vitro reconstitution of primordial germ cells has recently had a significant effect in the field of assisted reproductive technologies. However, the regulatory mechanisms underlying oogenesis remain unknown and recapitulation of oogenesis in vitro remains unachieved. Therefore, development of methods for obtaining mature oocytes by culturing the fetal ovaries in vitro could contribute to clarify these mechanisms. We adapt an in vitro system for culturing mouse fetal ovaries that support successful follicle assembly and improve oocyte growth and maturation. Ovarian tissues from 12.5 days postcoitum (dpc) fetal mice were cultured in vitro and the matured oocytes were differentiated from primordial germ cells after a 31 days culture period. Our results demonstrate that mouse fetal germ cells are able to form primordial follicles with artificial ovarian cells, and that oocytes within the growing follicles are able to mature normally in vitro. Taken together, this in vitro culture system is expected to aid in the development of new strategies to identify the reasons behind failure of follicle assembly and offer a platform for innovative research into preservation of female germ cells and conservation of endangered species.
The citrus flavonoid hesperetin has various pharmacological actions, including antioxidant, anti-inflammatory, and anticancer activities. The purpose of this study is to confirm whether the treatment of hesperetin can protect the oocyte from in vitro aging. Porcine oocytes were matured in vitro for 44 h (control) and for an additional 24 h in the presence of 0, 1, 10, 100, and 250 μM hesperetin (aging, H-1, H-10, H-100 and H-250, respectively). This study investigated the effect of different concentration of hesperetin on maturation, and reactive oxygen species (ROS) level, apoptosis index, and the developmental capacity of aging porcine oocytes. In the results, the percentage of cleaved oocytes that reached to the blastocyst stage of H-100 group (37.9 ± 1.1%) was similar to control (38.1 ± 0.8%), and also significantly higher than other aging groups (23.2 ± 0.8%; H-1, 19.7 ± 1.3%; H-10, 26.7 ± 0.6%; and H-250, 18.4 ± 1.6%.)(p<0.05). The H-100 group was significantly decreased ROS activity, and increased the level of glutathione (GSH) and expression of the antioxidant genes (PRDX5, NFE2L, SOD1 and SOD2) compared to the aging group. The H-100 groups prevented aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (GDF9, CCNB1, BMP15 and MOS). Also, it was confirmed that the H-100 group expressed higher level of estrogen receptor than the aging group. Therefore, this result indicated that hesperetin is an effective agent to protect from the oxidative stress during in vitro aging of porcine oocytes.
Previous studies have shown that Lonicera caerulea has a chemical protective effect. Phenolic and vitamin C contained in Lonicera caerulea prevent cancer, diabetes and cardiovascular disease, lower blood pressure and delay the aging process. However, the antioxidant mechanism of male reproductive system to heat stress is still unknown. Male reproductive system is very sensitive to heat. When scrotum temperature increase, oxidative stress can occur. Oxidative stress affects sperm motility and spermatogenesis, resulting in infertility. Therefore, we investigated the antioxidant effect of L. Caerulea in male genitalia by inducing oxidative stress by artificially exposing the testicles to heat at 42 ° C. The experiment was performed by dividing the ICR mouse into four groups. Each group is n = 5. Control group (C) and heat stress group (HS) were oral gavage administered D.W. Honey berry group (HB) and Honeyberry / heat stress group (HB + HS) were oral gavage administered honey berry (250mg / kg / day). HS groups (n=5, per n=5) received heat stress by exposing their lower bodies in the water bath at 42℃ for 30 minutes. We confirmed that there was a significant difference in the motility, morphology and the number of sperms using CASA(computer-assisted semen analysis). Lipid peroxidation assay results showed heat causes oxidative stress in serum. This study is conducting to investigate the antioxidant effect of L. Caerulea. Histologically analyzed the testicular form of each group, the activity level of heat shock protein and the level of reactive oxygen species were measured by Western blot and the level of catalase and HSP-90 was examined by RT-PCR analysis. Thus, studies of testicular morphology, sperm kinetics, hormone levels, heat shock protein expression and antioxidant enzymes under heat stress have shown that L. Caerulea ingestion has Anti-oxidant and thermal protective activity on the testis by heat damage.
Microenvironments surrounded with various extracellular matrix (ECM) components can decide specifically the fate of spermatogonial stem cells (SSCs) and integrin heterodimers recognizing directly ECM proteins play an important role in transporting ECM-derived signals into cytoplasm, resulting in inducing a variety of biological functions such as cell attachment, self-renewal and differentiation. However, to date, studies on type of integrin heterodimers expressed functionally on the undifferentiated SSCs derived from mouse with hybrid strain remain unclear. Therefore, we tried to investigate systematically what kind of integrin heterodimers are expressed transcriptionally, translationally and functionally in the SSCs derived from testis of hybrid (B6CBAF1) mouse. For these, magnetic activated cell sorting (MACS) using Thy1 antibody was used for isolating SSCs from testis, and real-time PCR or fluorescence immunoassay was conducted for measuring transcriptional or translational level of integrin α and β subunits in the isolated SSCs. Subsequently, antibody inhibition assay was conducted for confirming functionality of presumed integrin heterodimers. As the results, transcriptional levels of genes encoding total 25 integrin subunits were quantified, 7 integrin α (α4, α6, α7, α9, αV, αL and αE) and 2 integrin β (β1 and β5) subunit genes showed significantly increased transcriptional up-regulation, compared to the other integrin subunit genes. In contrast, integrin α3, α5, α10 and α11, and integrin β2, β3, β4 and β7 were weakly transcribed. When translational levels of the integrin α subunits showing high transcription level (α4, α6, α7, α9, αV, αL and αE) were measured, significantly strong translational up-regulation of integrin α6, α7, α9, αV and αL subunit genes were detected, whereas integrin α4 and αE subunit genes were weakly. In case of integrin β subunit, β1 evaluated more expression than β5. Based on these results, we speculated that the undifferentiated SSCs derived from B6CBAF1 mouse might express integrin α4β 1, α6β1, α7β1, α9β1, αVβ1 or αVβ5 on plasma membrane. Subsequently, the hybrid strain SSCs showed significantly increased adhesion to fibronectin, laminin, tenascine-C and vitronectin and functional blocking of integrin α4β1, α6β1, α9β1, and αVβ1 or αVβ5 in SSCs significantly inhibited attachment to fibronectin, laminin, tenascin-C and vitronectin, respectively. Accordingly, we could identify that the hybrid (B6CBAF1) mouse-derived SSCs had integrin α4β1, α6β1, α9β1, αVβ1 or αVβ5 on plasma membrane. Moreover, this information will greatly contribute to constructing non-cellular niche supporting self-renewal of SSCs in the future.
Lonicera Caerulea(Honey berry) has been used in medical treatment in Russia, Japan, China and Korea. It has high level of vitamin C and polyphenolics. Polyphenolics can improve anti-inflammatory effect and prevent cancer, diabetes mellitus type 2. Also, Vitamin C is a representative anti- oxidant. however, It is still unknown what effect it will have on the oxidation stress of the reproductive system. In previous studies, ROS can be produced when it is exposed to heat stress and has negative effect on sperm's maturation, capacitation, hyperactivation, acrosome reaction and fusion of egg and sperm. Therefore, The purpose of this study is to investigate the antioxidant effects of L.caerulea on the sperm and egg cells of mice. At first, it conducted using ICR mouse(n=20) during 4 weeks. There are four groups of mouse(n=5 per group). Also, L.caerulea was taken by oral gavage. Group Ⅰ(control) kept at 23℃~27℃ and administer D.W(0.5ml/day), Likewise, Group Ⅱ(HB) kept at room temperature but gave HB(0.5ml/day), Group Ⅲ (HB+HS) received heat stress (40℃) using hyperthermia induction chamber and gave HB at same dose. and Group Ⅳ(HS) exposed heat stress only. Mainly, we showed degree of gene expression using Western blot in SOD, HSP 70, 17β-HSD and Real time PCR. It can find correlation between intracellular activity like steroid hormone, apoptosis under ROS and antioxidant activity of L.caerulea.
The ability of conventional semen analysis to predict male fertility is questionable. Since the prediction of male fertility is extremely of importance for the artificial insemination and profitable farm managements in animals, the development of highly sensitive biomarker of male fertility is a prime concern. Porcine Seminal Protein I (PSP-I) and Porcine Seminal Protein II (PSP-II) have been known that they are related with motility, and viability of spermatozoa. Thus, we investigated PSP-I and PSP-II level in boar spermatozoa to predict boar’s fertility. The expressions of PSP-I and PSP-II in spermatozoa from 21 individual boars with different fertility and litter size (litter size ranges from 10.3 – 14.2) were examined using qRT-PCR. Litter size was determined in 530 saws after artificial insemination (AI). In addition, sperm motility, motion kinematics, and capacitation status were measured using computer-assisted sperm analysis and Hoechst 33258/chlortetracycline fluorescence staining, respectively. PSP-I and PSP-II showed significantly negative correlation with litter size (r=0.578; P=0.006 and r=0.456; P=0.038, respectively). Furthermore, receiver-operating curves (ROC) was used to determine the accuracy for the prediction of boar fertility. Therefore we divided into 2 groups based on the median value of litter size. When selecting higher litter size group, PSP-I can predict litter size with overall accuracy 90.48% (sensitivity 88.89, specificity 91.67, negative predictive value 91.67, and positive predictive value 88.89) and PSP-II can predict with overall accuracy 81.82% (sensitivity 55.56, specificity 100.00, negative predictive value 76.47, and positive predictive value 100.00). Interestingly, PSP-I and PSP-II were found to increase 0.76 pups than average litter size (average 12.48) in tested boars. To best of our knowledge, this study is the first trial to investigate the correlation between PSP-I, PSP-II, and litter size. Therefore, we suggest that PSP-I and PSP-II could be considered as promising biomarkers for predicting male fertility and litter size outcome in field condition.
Bisphenol A (BPA), an endocrine-disrupting chemical, has received tremendous attention in the past few decades because of its detrimental health effects. Growing evidence supports that BPA is capable to alter the reproductive performance of the exposed individual. In spermatozoa, it has been reported that BPA increased oxidative stress by the overproduction of reactive oxygen species (ROS), subsequently affects the sperm function, biochemical properties, and fertility. Since antioxidants minimize cellular oxidative stress, therefore may have protective effects against BPA-induced stress. In the present study, we incubated mice spermatozoa for 6 h in a condition that support in vitro fertilization. The sperm incubation media was additionally supplemented with either BPA or BPA together with antioxidants, such as glutathione, vitamin C, and vitamin E. Our results showed that antioxidant significantly decreased the production of ROS that subsequently supports motility and acrosomal integrity of BPA-exposed spermatozoa. Particularly, glutathione and vitamin E inhibit protein kinase-A dependent phosphorylation of sperm proteins subsequently prevented precocious acrosome reaction. In addition, both antioxidants were found to restore fertilization and early embryo development potentiality of BPA-exposed spermatozoa. Therefore, we conclude that antioxidants minimize oxidative stress in spermatozoa in a BPA containing micro-environment, thus avoiding BPA-mediated harmful consequences. The current finding has both theoretical and clinical significance for developing potential remedies of the BPA toxicity.
In this study, we examined number, motility and plasma membrane integrity of spermatozoa from six regions of epididymis in bull. Six testicles with epididymides were castrated from six bulls (mean±standard error, age of days = 441.3±9.6, body weight (kg) = 367±8.4, scrotal circumference (cm) = 30.7±0.4) at Hanwoo Research Institute, NIAS and transported to laboratory within 1 hour. Testicular weight, length, width and circumference were recorded. Epididymis in each bull was randomly used for recovery of spermatozoa. Epididymis was divided into six regions: efferent duct (ED), caput, corpus, proximal cauda (Pcauda), distal cauda (Dcauda) and vas deferens (VD). In experiment 1, we examined sperm number of each region of epididymis. Each region of epididymis contained different number of spermatozoa: ED (37.8±15.7 × 106cells/ml, 8.2%), caput (93.6±18.8 × 106cells/ml, 20.2%), corpus (33.0±8.5 × 106cells/ml, 7.1%), Pcauda (104.2±23.5 × 106cells/ml, 22.5%), Dcauda (180.5±32.5 × 106cells/ml, 39.0%) and VD (14.0±5.0 × 106cells/ml, 3.0%). In experiment 2, sperm motility of each epididymal region was examined by computer assisted sperm analysis (SCA, MicroOptic) system. Sperm motility was divided into 4 groups (fast progressive, slow progressive, non-progressive and immotile) based on WHO guideline. Percentages of fast progressive of Pcauda and Dcauda (11.0±2.3 and 15.4±3.6%) were significantly higher than that of ED, Caput, Corpus and VD which is 0.1±0.1, 1.5±0.6, 1.9±0.7 and 0.3±0.2%, respectively (p<0.05). In experiment 3, percentage of intact plasma membrane spermatozoa of each regions were examined by hypoosmotic swelling test. Percentages of intact plasma spermatozoa were not significantly different among six regions of epididymis: ED, caput, corpus, Pcauda, Dcauda and VD which is 68.0±8.6, 74.0±5.3, 68.5±6.2, 70.8±5.5, 71.0±5.8 and 64.6±10.8%, respectively. In conclusion, in the present study, we found out distribution, motility and plasma membrane integrity of spermatozoa from six regions of epididymis in Hanwoo bull. These results will be contributed to basic research about spermatozoa transportation and characters in epididymis of bull.