Ethanol treatment during the brain growth spurt period has been known to induce the death of Purkinje cells. The underlying molecular mechanisms and the role of reactive oxygen species (ROS) in triggering ethanol-induced Purkinje cell death are, however, largely unresolved. We undertook TUNEL staining, western blotting assay and immunohistochemistry for the cleaved forms of caspase-3 and -9, with calbindin D28K double immunostaining to identify apoptotic Purkinje cells. The possibility of ROS-induced Purkinje cell death was immunohistochemically determined by using anti-8-hydroxy-2'deoxyguanosine (8-OHdG), a specific cellular marker for oxidative damage. The results show that Purkinje cell death of PD 5 rat cerebellum following ethanol administration is mediated by the activation of caspase-3 and -9. However, unexpectedly, TUNEL staining did not reveal any positive Purkinje cells while there were some TUNEL-positive cells in the internal and external granular layer. 8-OHdG was detected in the Purkinje cell layers at 8 h, peaked at 12-24 h, but not at 30 h post-ethanol treatment. No 8-0HdG immunoreactive cells were detected in the internal and external granular layer. The lobule specific 8-OHdG staining patterns following ethanol exposure are consistent with that of ethanol-induced Purkinje cell loss. Thus, we suggest that ethanol-induced Purkinje cell death may not occur by the classical apoptotic pathway and oxidative damage is involved in ethanol-induced Purkinje cell death in the developing cerebellum.
The anandamide signaling plays various roles in directing reproductive processes. Mouse embryos are shown to express high levels of CB1 receptor (CB1R). It has recently been shown that an analog of anandamide induces autophagy-mediated cell death through stimulation of ER stress response in glioma cells. Since adverse effects of high levels of anandamide agonists on embryo development and implantation are well known, we hypothesized that anandamide mediates an autophagic response in embryonic cells as in cancer cells via highly abundant CB1R on embryos. We tested this hypothesis by using a stable anandamide agonist, Methanandamide (MET) in three embryonic cell systems, i.e., mouse embryonic fibroblasts (MEF), trophoblast stem (TS) cells, and preimplantation embryos from mice. RT-PCR, immunofluorescence staining, and Western blot analysis were used to examine the effects of anandamide on autophagy in these systems. In MEF cells, the conversion of LCI to LCII was heightened by methanandamide (MET), and AM251, a selective CB1 antagonist partially reversed the effects of MET. Treating MEF cells with a high level of MET induces clustering of GFP-LC3, seen as large puncta throughout the cytoplasm. At 28 nM concentration, MET also weakly increased LC3II in TS cells. When MET was injected to day 4 pregnant mice, autophagy was increased in blastocysts in utero as demonstrated by the increased number of LC3 puncta. Formation of numerous autophagic vacuoles was also confirmed by electron microscopic observation. In conclusion, this work suggests that the anandamide-CB1 signaling pathway may be one inducer of autophagy in embryonic cells.
A field experiment was conducted to examine the fruit quality characters in second generation (F2) hybrid cultivar and to compare the fruit characters with original F1 hybrid cultivar of minipaprika (yellow and orange type) at the Research Farm, Hwacheon in July, 2010. Fruit characters varied within F2 population of each minipaprika type. In minipaprika yellow, fruit weight varied from 12.2 g to 50.8 g (average 28.5 g) and fruit length/width varied from 1.4 to 2.8 (average, 2.0). Pericarp thickness ranged from 1.8 mm to 4.1 mm (average, 2.9 mm). Total soluble solid (TSS) varied from 6.2˚Brix to 13.5˚Brix with an average of 8.7˚Brix. Fruit volume varied from 10.3 cc to 46.7 cc with an average of 24.4 cc. In minipaprika orange type, fruit weight ranged from 19.7 g to 42.4 g (average, 29.0 g) and fruit length/width varied from 1.5 to 2.6 (average, 2.0). Pericarp thickness varied from 2.1 mm to 4.1 mm with an average of 3.0 mm. TSS varied from 5.0˚Brix to 12.2˚Brix (average, 7.9˚Brix) and average fruit volume was 24.6 cc ranging from 10.7 cc to 35.0 cc. The average fruit quality characters in F2 population in both yellow and orange minipaprika did not differ from their F1 hybrid parent and F2 seed can be an additional way to supply high yielding hybrid cultivars at lower cost to the minipaprika growers.
Since cable members are the major structural components in cable bridges, they should be properly inspected for surface damage as well as inside defects such as corrosion and/or breakage of wires. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs (MLTM) was initiated to develop the cable inspection robot. In this study, only the vision-based surface damage detection system based on image processing techniques is addressed. The damage detection algorithm combines some image enhancement techniques with principal component analysis (PCA) to detect damages on cable surface. The images from three cameras attached to the cable climbing robot are wirelessly transmitted to the server computer at the cable support. They are processed with image enhancement method together with noise removal technique to improve overall image quality. Then they are projected into PCA sub-space. Finally, the Mahalanobis square distances of the projected images to all sample patterns are calculated. The smallest distance is found to be the match for the input image. The proposed damage detection algorithm was verified through laboratory tests on three types of cables.
This study was conducted to investigate the anti-inflammatory effects of Pruns mume, Schisandra chinensis, Chaenomeles sinensis-- Prunus mume mixtrue (PM) treatment on colitis induced in mice by dextran sodium sulfate (DSS) treatment. A total of 25 male BALB/c mice (average weight 20.7 ± 1.6 g) were divided into 5 treatment groups and fed a commercial diet (A), PM administration (B), commercial diet + induced colitis by DSS (C), PM administration + induced colitis by DSS (D) and sulfasalazine + induced colitis by DSS (E). We found that PM treatment (D) and sulfasalazine (E) decreased the expression of TNF-α and COX-2 compared to the DSS-induced colitis group (C). The expression of IL-4, STAT6, IFN-γ, STAT1 was decreased in group D and group E compared to the colitis group (C), COX-2 and STAT1 were more decreased in group D. The serum IgE levels decreased in the PM treatment groups (C and D) compared to the non-PM treatment groups (A and B) although there was no significant difference between the PM treatment groups. It is notable that a therapeutic application of the PM extracts ameliorated DSS-induced colitis in mice.
Low temperature stress is one of the major negative factors affecting vegetative and reproductive growth of rice. To better understand responses of rice plants to low temperature we analyzed transcriptome expression patterns in glumous flower of cold-tolerant japonica rice variety, Stejaree45, and cold-susceptible variety, HR19621-AC6 at booting stage under cold water irrigation. A total of 2,411 probes were differentially expressed by low temperature in glumous flowers of the two varieties. Some important genes involved in hormone biosynthesis showed variety-specific regulation. Expression of GA20ox3 and GA2ox, among the genes involved in GA biosynthesis, was regulated differentially in the two varieties. Among the genes involved in IAA biosynthesis, YUCCA1 and TAA1:1 showed variety-specific regulation. Among the genes involved in cytokinin biosynthsis and signaling, expression of LOG, HK1 and HK3 was significantly down-regulated only in the cold-susceptible variety. Among the genes involved in ABA biosynthesis, NSY and AAO3 were down-regulated only in the cold-tolerant variety. In general, genes involved in GA, IAA and cytokinin biosynthesis responded to cold temperature in such a way that capacity of those bioactive hormones is maintained at relatively higher levels under cold temperature in the cold-tolerant variety, which can help minimize cold stress imposed to developing reproductive organs in the cold-tolerant variety.
GPS anomaly has increased according to the degradation of satellite performance, and many GPS users could be exposed to any kinds of error-included signals without any previous notice when unscheduled error occurred. RSIM (Reference Station Integrity Monitors) is a typical monitoring method to broadcast PRC (Pseudo Range Correction) for users. However, there were some cases that the receiver detected the anomalous satellite's signal even though it was unhealthy set, consequently it occurred a large range error. Then it is important to monitor the integrity of GPS signal and it is needed to devise the correction method of pseudorange by eliminating error-occurred PRN for notification to GPS users when it is monitored that the anomaly occurred. This paper proposes the basic concept of how to correct the pseudorange. The paper also shows the analysis results of PRN10 GPS anomaly occurred on day 39 in 2007 with corrected results by eliminating anomaly satellite (PRN10). The proposed correction method shows decreased pseudorange error range compared to the case when the anomaly satellite were used.
A recent report demonstrated that in human aging brain after menopause/andropause luteinizing hormone (LH) is localized in the cytoplasm of pyramidal neurons of hippocampus and a significant increase of LH is also detected in the cytoplasm of pyramidal neurons and neurofibrillary tangles of Alzheimer's disease brain compared to age-matched control brain. It was suggested that the decreased steroid hormone production and the resulting LH expression in the neurons vulnerable to Alzheimer's disease pathology may have some relevance to the development of Alzheimer's disease. It is, however, unclear whether the presence of LH in neurons of human aging and Alzheimer's disease brain is due to intracellular LH expression or to LH uptake from extracellular sources, since gonadotropins are known to cross the blood brain barrier. Moreover, there is no report by using the brain of experimental animal that LH is expressed in such neurons as found in the human brain. In the present study, we found that LH immunoreactivity is localized in the pyramidal neurons of cerebral cortex and hippocampus of 12 and 18 months old rats but can not detect any immunoreactivity for LH in the young adult (3-5 months old) rats. To confirm that these LH immunoreactivity results from de novo synthesis in the brain but not the uptake from extracellular space, we performed RT-PCR and found that mRNA for LH is detected in several regions of brain including cerebral cortex and hippocampus. These findings suggest us that LH expression in old rat brain may play an important role in aging process of rat brain.
가압경수로 원전의 농축폐액건조설비에서 발생된 농축폐액 건조물을 유리화 하는 방안이 연구되어 왔다. 중저준위 방사성폐기물을 유리화할 경우 최종 생성물은 내구성이 우수하고 현저한 부피저감 효과의 장점을 가지고 있다. 붕산농축폐액에 대한 유리화 타당성 연구는 분말시료의 전처리 방법 개발, 유리조성 프로그램을 이용한 유리개발 및 실증시험으로 수행되었다. 분말시료에 대한 전처리 방안으로는 유리화설비에 투입하기 전에 고형성을 갖도록 펠렛화하는 것이다. 농축폐액 성분중 Na와 B의 함량 분포는 유리속에 용융되는 정도와 설비로부터의 폐기물 배출·처리에 영향을 주기 때문에 이를 고려하여 유리조성이 개발되어야 한다. 실증시험에서는 폐기물 투입률, 배기체 특성 및 최종 생성물인 유리고화체의 특성이 검토되었다. 본 연구는 붕산농축폐액에 대한 유리고화체의 물리화학적 특성을 검토하고 유리화 타당성을 확인하는데 목적이 있다.