담배가루이는 전세계의 온대 및 아열대 지방에 넓게 분포하고 있으며, 한국에서는 시설재배작물의 주요 해충 이다. 1998년 충북 친천군 장미재배지에서 처음 확인되었으며, 이후 전국적으로 확산된 것으로 추정된다. 담배가 루이는 고추, 토마토, 오이 등 300종이 넘는 넓은 기주범위를 가지며, 식물체를 흡즙하여 작물의 생산성을 저하시 키고 토마토황화잎말림바이러스(tomato yellow leaf curl virus, TYLCV) 등 100여종이 넘는 바이러스를 매개한다. 담배가루이는 주로 살충제를 이용한 방제가 이루어진다. 하지만 살충제를 이용한 방제법은 살충제 저항성 개체 를 발생시킨다. 살충제 저항성 개체가 발생하게 되면 방제 효율이 급감하여 농가에 추가적인 경제적 피해를 야기 한다. 본 연구는 국내 지역별 담배가루이를 대상으로 약제별 살충제 저항성의 발생 현황을 조사하여, 지역별 효과적인 약제를 탐색하고 향후 방제 전략 수립에 기여하고자 한다. 담배가루이는 전국 15지역(파주, 양평, 화성, 양구, 횡성, 평창, 당진, 천안, 공주, 예천, 구미, 사천, 남원, 나주, 고흥)에서 채집되었다. 살충제는 작용기작 별 사용량이 많은 8종을 선정하였으며, 엽침지법을 사용하여 살충률을 확인하였다. 곤충생장조절제(insect growth regulators, IGR) 피리프록시펜계 약제는 알을 대상으로, 그 외 7개 약제는 2령약충을 대상으로 살충률을 확인하였 다. 모든 지역에서 높은 살충력을 보인 약제는 아버멕틴과 밀베마이신계, 스피노신계, METI살충제, 디아마이드 계 약제이다. 특히 아버멕틴과 밀베마이신계 약제는 살충제 권장사용농도(10ppm)보다 낮은 8.9ppm이하의 LC90 값을 보여 감수성으로 추정되며, 예외적으로 천안 지역의 25.6ppm으로 상대적으로 높은 LC90값을 보였다. 낮은 살충력을 보인 약제는 네오니코티노이드계, 설폭시민계, 피리프록시펜계, 테트론산 및 테트람산 유도체 약제이 다 특히 네오니코티노이드계 약제는 모든 지역에서 살충제 권장사용농도(50ppm)보다 높은 715ppm이상의 LC90 값을 보여, 모든 지역에서 살충제 저항성이 발생한 것으로 추정된다. 실험결과를 통해 살충제 별 살충력의 차이와 지역별 살충제 저항성을 검정하였다. 연구결과를 통해 지역별/약제별 저항성관리 및 대응전략을 수립하여 농업 생산성을 향상시키는 것에 도움이 되고자 한다.
Five insecticides (Acrinathrin, Dinotefuran, Emamectin benzoate, Chlorfenapyr and fluxametamide) approved for tomato cultivation were evaluated in Frankliniella occidentalis populations collected from Chungcheong province (Cheongyang, Chungju and Gongju). Leaf dip bioassay was used to evaluate resistance levels (LC50). Bioassays on Acrinathrin demonstrated higher LC50 concentration in evaluated populations. In particular, the Chungju population was 745.61 times the recommended concentration of the insecticide. Other remarkable resistance levels were recorded for the Dinotefuran with 435.06 times and 196.29 times the recommended concentrations for the populations from Chungju and Gongju, respectively. Bioassays for Emamectin benzoate, Chlorfenapyr and Fluxametamide showed low resistance to insecticides in the evaluated populations.
Yellow flower thrips (WFT), Frankliniella occidentalis is mainly controlled using chemical control methods. But the continuous use of chemical pesticides in greenhouse may contribute to development of insecticide resistance. Therefore, in this study, we evaluated the insecticidal activity of eleven insecticides against the WFT occurring in greenhouse pepper cultivation in the Gyeonggi province. The results showed no resistance in treatments with emamectin benzoate, fluxametamide, and flometoquin while high levels of resistance were recorded in treatments with acrinathrin, acetamiprid, and dinotefuran. The Anseong and Yeoju population was more resistant against spinetoram and chlorfluazuron, respectively, than populations from other regions.
Vespa mandarinia (Vespidae: Hymenoptera) is one of the two largest true hornets known to science. The species is a noted predator of social Hymenoptera and a significant pest of managed honey bees in its native range, but is also known to feed on a wide variety of other species when available. Most of the prey records for V. mandarinia are derived from visual observations in Japan, with sparse observations from other parts of its native range. A population of V. mandarinia was detected in North America in 2019 and five nests were removed between 2019 and 2021. We extracted DNA from larval meconia from four nests collected in Washington State, USA, and amplified the CO1 region to determine the potential prey base. We compared these with sequences generated from three nests in the Republic of Korea, and with prey pellets collected from foraging hornets at several locations in Korea. Results indicate that the prey base was much wider in the ROK than the USA, although social Hymenoptera were the most abundant and common prey items in both regions. Prey range seems to be bound by an intersection of organism size and local biodiversity, with little evidence to suggest that the latter is a limiting factor in colony success.
The Korea Forest Service has designated seven alpine tree species—Abies koreana, A. nephrolepis, Juniperus chinensis, Picea jezoensis, Pinus pumila, Taxus cuspidata, and Thuja koraiensis—as threatened with extinction in Korea. In 2023, we conducted a study on the seasonal occurrence of insect pests, focusing mainly on two coleopteran taxa (Cerambycidae and Scolytinae) and two hemipteran taxa (Aphrophoridae and Cicadellidae) in subalpine forests dominated by A. koreana, A. nephrolepis, Picea jezoensis, Thuja koraiensis, and Taxus cuspidata. We utilized three types of traps—Malaise trap, Lindgren funnel trap, and window trap—in eight investigation locations in Korea. In this presentation, we present the study results and discuss the effects of insect pests on alpine coniferous trees in Korea.
Recent advances in artificial intelligence and machine learning, such as the use of convolutional neural networks (CNNs) for image recognition, have emerged as a promising modality with the capability to visually differentiate between mosquito species. Here we present the first performance metrics of IDX, Vectech’s system for AI mosquito identification, as part of Maryland’s mosquito control program in the USA. Specimens were collected over fourteen weeks from twelve CDC gravid trap collection sites, identified morphologically by an entomologist, and imaged using the IDX system. By comparing entomologist identification to the algorithm output by IDX, we are able to calculate the accuracy of the system across species. Over the study period, 2,591 specimens were collected and imaged representing 14 species, 10 of which were available in the identification algorithm on the device during the study period. The micro average accuracy was 94.9%. Of these 10 species, 7 species consisted of less than 30 samples. The macro average accuracy when including these species was 79%, while the macro average when excluding these species was 93%. In the next iteration of this technology, Vectech is translating the vector identification capabilities of IDX into systems capable of processing greater numbers of specimens at large public health facilities, and remote sensing systems that will allow public health organizations to monitor vector abundance and diversity from the office. These advances demonstrate the utility of artificial intelligence in entomology and its potential to support vector surveillance and control programs around the world.
As climate change and population growth raise the likelihood of natural disasters, it becomes crucial to comprehend and mitigate these risks in vital infrastructure systems, especially nuclear power plants (NPPs). This research addresses the necessity for evaluating multiple hazards by concentrating on slope failures triggered by earthquakes near NPPs over a timeframe extending up to a return period of 100,000 years. Utilizing a Geographical Information System (GIS) and Monte Carlo Simulation (MCS), the research conducts a comprehensive fragility assessment to predict failure probability under varying ground-shaking conditions. According to the Newmark displacement method, factors such as Peak Ground Acceleration (PGA), slope angle, soil properties, and saturation ratio play significant roles in determining slope safety outcomes. The investigation aims to enhance understanding seismic event repercussions on NPP-adjacent landscapes, providing insights into long-term dynamics and associated risks. Results indicate an increase in slope vulnerability with longer return periods, with distinct instances of slope failures at specific return periods. This analysis not only highlights immediate seismic impacts but also underscores the escalating risk of slope displacement across the extended return period scales, crucial for evaluating long-term stability and associated hazards near nuclear infrastructure.
Ni-CNT nanocomposites were synthesized via the electrical explosion of wire (EEW) in acetone and deionized (DI) water liquid conditions with different CNT compositions. The change in the shape and properties of the Ni-CNT nanopowders were determined based on the type of fluids and CNT compositions. In every case, the Ni nanopowder had a spherical shape and the CNT powder had a tube shape. However, the Ni-CNT nanopowders obtained in DI water exhibited irregular shapes due to the oxidation of Ni. Phase analysis also revealed the existence of nickel oxide when using DI water, as well as some unknown peaks with acetone, which may form due to the metastable phase of Ni. Magnetic properties were investigated using a Vibrating Sample Magnetometer (VSM) for all cases. Nanopowders prepared in DI water conditions had better magnetic properties than those in acetone, as evidenced by the simultaneous formation of super paramagnetic NiO peaks and ferromagnetic Ni peaks. The DI water (Ni:CNT = 1:0.3) sample revealed better magnetic results than the DI water (Ni-CNT = 1:0.5) because it had less CNT contents.
Background: Somatic cell nuclear transfer (SCNT) is a prominent technology that can preserve superior genetic traits of animals and expand the population in a short time. Hematological characters and endocrine profiles are important elements that demonstrate the stability of the physiological state of cloned animals. To date, several studies regarding cloned camels with superior genes have been conducted. However, detailed hemato-physiological assessments to prove that cloned camels are physiologically normal are limited. In this study, We evaluated the hemato-physiological characteristics of cloned male and female dromedary camels (Camelus dromedaries). Methods: Therefore, we analyzed variations in hematological characteristics and endocrine profiles between cloned and non-cloned age-matched male and female dromedary camels (Camelus dromedaries ). Two groups each of male and female cloned and non-cloned camels were monitored to investigate the differences in hemato-physiological characteristics. Results: All the animals were evaluated by performing complete blood count (CBC), serum chemistry, and endocrinological tests. We found no significant difference between the cloned and non-cloned camels. Furthermore, the blood chemistry and endocrine profiles in male and female camels before maturity were similar. Conclusions: These results suggest that cloned and non-cloned camels have similar hematological characteristics and endocrine parameters.
스마트팜으로 알려진 지능형 온실환경 제어(스마트제어)가 겨울철 장미 ‘비스트’의 절화품질에 미치는 영향을 기존의 농 가 수동제어(수동제어)와 비교하여 조사하였다. 그 결과 지능 형 스마트제어가 온실환경인 기온, 배지온도, 상대습도를 겨 울철 절화 장미 생산에 적합하게 유지시켰다. 반면, 수동제어 는 적정한 환기와 상대습도 관리에 다소 불리하였고, 결과적 으로 겨울철 과습으로 흔히 발생하는 잿빛곰팡이 발병이 증가 했으며 절화수명이 단축되었다. 절화의 생체량, 길이, 수명 등 절화품질 역시 스마트제어를 통해 상대적으로 개선되었다. 이 번 연구를 통해 스마트제어 방식이 시설환경관리 측면에서 겨 울철 고품질 절화 장미 생산에 유리하다는 것을 확인하였다.
Dystocia, a challenging condition in obstetrics, can arise from various causes, including fetal monsters with structural abnormalities. This case report presents a unique case of dystocia due to a fetal monster known as Perosomus Elumbis in a beetal breed goat from Pakistan. The 4-years-old pregnant doe presented with prolonged straining and failure to deliver the fetus after 8 hours of labor. Upon examination, the cervix was dilated, and only the forelimbs of the fetus were visible in the birth canal. The subsequent delivery involved the application of manual traction by using a dystocia kit, and the removal of edematous fluid from the legs. The monster fetus exhibited absence of hair growth, along with the absence of thoracic vertebrae. Two other fetuses were present, with one found dead and the other alive. Posttreatment involved fluid therapy, antibiotics, and supportive care for the doe. This case report sheds light on the occurrence of Perosomus Elumbis fetal monsters and their impact on dystocia in goat breeding. Understanding the underlying causes and implementing appropriate management strategies are crucial for successful outcomes in similar cases.
Background: The biological information of fish, which include reproduction, is the prerequisite and the basis for the assessment of fisheries. Methods: The aim of this work was to know the reproductive biology with the first sexual maturity (TL50) and the spawning period for 58 mainly fish species in the waters around La Réunion Island (Western Indian Ocean). Twenty families belonging to the Actinopterygii were represented (acanthuridae, berycidae, bramidae, carangidae, cirrhitidae, gempylidae, holocentridae, kyphosidae, labridae, lethrinidae, lutjanidae, malacanthidae, monacanthidae, mullidae, polymixiidae, pomacentridae, scaridae, scorpaenidae, serranidae, sparidae; 56 species; n = 9,751) and two families belonging to the Elasmobranchii (squalidae, centrophoridae; 2 species; n = 781) were sampled. Between 2014 and 2022, 10,532 individuals were sampled covering the maximum months number to follow the reproduction periods of these species. Results: TL50 for the males and the females, respectively, ranged from 103.9 cm (Acanthurus triostegus ) to 1,119.3 cm (Thyrsitoides marleyi ) and from 111.7 cm (A. triostegus ) to 613.1 cm (Centrophorus moluccensis ). The reproduction period could be very different between the species from the very tight peak to a large peak covered all months. Conclusions: Most species breed between October and March but it was not the trend for all species around La Réunion Island.
Bolivian tuber species like potato (Solanum tuberosum), native potato (Solanum sp), Oca (Oxalis tuberosa Molina), Olluco (Ullucus tuberosus Caldas), and Isaño (Tropaeolum turosum Ruíz & Pav.) hold extraordinary nutritional value and cultural significance, particularly within the Andean region. This study examined the mineral composition of Bolivian tuber species as an essential step toward understanding their nutritional significance and potential contributions to addressing dietary deficiencies. The research involved detailed analysis of diverse tuber cultivars, uncovering distinct mineral profiles across species. Native potato shows high levels of nitrogen (N), potassium (K), phosphorus (P), and magnesium (Mg) levels, alongside moderate micronutrients like iron (Fe) and zinc (Zn). Commercial potatoes exhibited prominence in N, P, and K, with moderate Fe, Zn, and manganese (Mn) levels. Oca, Isaño, and Papa Lisa displayed unique mineral concentrations, offering potential nutritional benefits. Intricate correlations and significant variances among elements highlighted the diverse mineral compositions among these tuber species. Multivariate analyses emphasized distinct mineral profiles unique to each species, revealing significant compositions of isaño and papa lisa's. The Multitrait Genotype- Ideotype Distance Index (MGIDI) identified isaño jaspeado, isaño and an unnamed native potato, AXT2, as promising ideotypes due to their exceptional mineral compositions. These findings provide comprehensive insights into Bolivian tuber species' various mineral compositions, underscoring their nutritional significance and potential in targeted breeding for improved dietary support and enhanced food security.
GN01 is a new antiviral medicine acting against Korean Sacbrood virus (KSBV) of honeybees. It contains 5 mg/mL of active ingredient, double stranded RNAs(dsRNA), that homologous to KSBV ribonucleic acid coding coat protein (VP1) of virus and inducing RNA interference (RNAi). RNA medicine is generally recognized as safe for rapid breakage by intrinsic ribonuclease and limited absorption from gastrointestinal tract. However, there were no data of repeat-dose toxicity in laboratory animals for dsRNA targeting SBV. This study was performed to investigate toxicity of GN01 in SD rats after weekly oral dosing for 28 days and to determine its no-observed-adverse-effect-level (NOAEL). Male and female SD rats were orally administered with GN01 at 0, 25, 50 and 100 mg/kg bw/day of dsRNA once per week for 28 days (total 5 administrations). The highest dose 100 mg/kg bw/day was determined based on the maximum volume injectable (20 mL/kg bw) via gavage. During treatment period, clinical signs, functional and sensory responses, body weights, food and water consumption, ophthalmological findings and urinalysis were investigated. After treatment period, hematological and clinical biochemistry tests and examination of necropsy findings, organ weights and histopathological lesions were performed. There were no significant differences between all test groups and vehicle control group in all measured parameters. Therefore, the NOAEL of GN01 was determined 100 mg/kg bw/day, the highest dose administered. In conclusion, repeated oral administration of GN01, a dsRNA medicinal product, is safe even at the maximum available dose in rats.
4-Nitrophenol (4NP) is a vital intermediate in organic industries, and its exploitation creates serious environmental issues. We propose a fluorescence quenching-based strategy with nitrogen and sulfur co-doped carbon dots (NS-CDs) for highly sensitive 4NP detection with excellent selectivity. The NS-CDs are produced through the hydrothermal process, in which citric acid serves as a carbon source and cysteamine hydrochloride as a source of N and S. The effect of doping was also studied by synthesizing undoped CDs and examining their properties. As-developed NS-CDs exhibit a bright cyan blue color with maximum emission centered at 465 nm. The fluorescence of NS-CDs is significantly quenched in an approximately linear fashion with increasing 4NP concentration (7.5–97.5 μM). The inner filter effect (IFE) and static quenching (SQ) between NS-CDs and 4NP are responsible for such fluorescence reduction. The fluorimetry technique enables the quantification of 4NP with a limit of detection (LOD) of about 0.028 μM. Moreover, the fluorescence quenching is tested for several other chemical compounds but they generate false quenching signals; only 4NP leads to fluorescence quenching of NS-CDs, demonstrating excellent selectivity. The “turn-off” fluorescence properties and visually apparent color change of the fluorescent probe reveal the excellent performance for 4NP sensing. The NS-CDs’ capability of quantifying 4NP in real water samples (tap water and drinking water) produces an excellent recovery rate ranging between 96.24 and 98.36%.
In this investigation, we synthesized a novel quaternary nanocomposite, denoted as RGO-Ba(OH)2/CeO2/TiO2, through a straightforward and cost-effective solid-state synthesis approach. The as-prepared composites underwent a series of comprehensive characterizations, including XRD, FTIR, TGA-DTA, XPS, SEM, EDAX, and TEM analyses, affirming the successful synthesis of a quaternary nanocomposite with well-interconnected nanoparticles, nanorods, and sheet-like structures. Further, our electrochemical performance evaluations demonstrated that the electrochemical capacitance of the RGO-Ba(OH)2/CeO2/ TiO2 nanocomposite achieved an impressive value of 445 F g− 1 at a current density of 1.0 A g− 1, particularly when the mass ratio of CeO2 and TiO2 was maintained at 90:10. Furthermore, the specific capacitance retained a remarkable 65% even after 2000 cycles at a current density of 6 A g− 1 in a 3 mol KOH electrolyte. Comparatively, this outstanding electrochemical performance of the RGO-Ba(OH)2/CeO2/TiO2 (90:10) nanocomposite can be attributed to several factors. These include the favorable electrical conductivity and large specific surface area provided by graphene, TiO2, and Ba(OH)2, the enhanced energy density and extended cycle life resulting from the presence of CeO2, and the synergistic contributions among all four components. Therefore, the RGO-Ba(OH)2/CeO2/TiO2 nanocomposite emerges as a highly promising electrode material for supercapacitors.
The untreated effluent dropping into the environment from various textile industries is a major issue. To solve this problem, development of an efficient catalyst for the degradation of macro dye molecules has attracted extensive attention. This work is mainly focused on the synthesis of nickel–manganese sulfide decorated with rGO nanocomposite (Ni–Mn-S/rGO) as an effective visible photocatalyst for degradation of textile toxic macro molecule dye. A simple hydrothermal method was used to synthesize Ni–Mn-S wrapped with rGO. The prepared composites were characterized using various techniques such as X-ray diffraction (XRD), high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infra-red spectrometer (FTIR), and ultra violet–visible (UV–Vis) spectroscopy. The photocatalytic performance of nickel sulfide (NiS), manganese sulfide (MnS), nickel–manganese sulfide (Ni–Mn-S), and Ni–Mn-S/rGO nanocomposite was assessed by analyzing the removal of acid yellow (AY) and rose bengal (RB) dyes under natural sun light. Among these, the Ni–Mn-S/rGO nanocomposite showed the high photocatalytic degradation efficiency of AY and RB dyes (20 ppm concentration) with efficiency at 96.1 and 93.2%, respectively, within 150-min natural sunlight irradiation. The stability of photocatalyst was confirmed by cycle test; it showed stable degradation efficiency even after five cycles. This work confirms that it is an efficient approach for the dye degradation of textile dyes using sulfide-based Ni–Mn-S/rGO nanocomposite.