검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 180

        3.
        2023.11 구독 인증기관·개인회원 무료
        The solid-state chemistry of uranium is essential to the nuclear fuel cycle. Uranyl nitrate is a key compound that is produced at various stages of the nuclear fuel cycle, both in front-end and backend cycles. It is typically formed by dissolving spent nuclear fuel in nitric acid or through a wet conversion process for the preparation of UF6. Additionally, uranium oxides are a primary consideration in the nuclear fuel cycle because they are the most commonly used nuclear fuel in commercial nuclear reactors. Therefore, it is crucial to understand the oxidation and thermal behavior of uranium oxides and uranyl nitrates. Under the ‘2023 Nuclear Global Researcher Training Program for the Back-end Nuclear Fuel Cycle,’ supported by KONICOF, several experiments were conducted at IMRAM (Institute of Multidisciplinary Research for Advanced Materials) at Tohoku University. First, the recovery ratio of uranium was analyzed during the synthesis of uranyl nitrate by dissolving the actual radioisotope, U3O8, in a nitric acid solution. Second, thermogravimetric-differential thermal analysis (TG-DTA) of uranyl nitrate (UO2(NO3)2) and hyper-stoichiometric uranium dioxide (UO2+X) was performed. The enthalpy change was discussed to confirm the mechanism of thermal decomposition of uranyl nitrate under heating conditions and to determine the chemical hydrate form of uranyl nitrate. In the case of UO2+X, the value of ‘x’ was determined through the calculation of weight change data, and the initial form was verified using the phase diagram for the U-O system. Finally, the formation of a few UO2+X compounds was observed with heat treatment of uranyl nitrate and uranium dioxide at different temperature intervals (450°C-600°C). As a result of these studies, a deeper understanding of the thermal and chemical behavior of uranium compounds was achieved. This knowledge is vital for improving the efficiency and safety of nuclear fuel cycle processes and contributes to advancements in nuclear science and technology.
        4.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polymeric carbon nitride (p-C3N4) is a promising platform as a metal-free photo-catalyst for various reactions. The p-C3N4 can be produced by thermal poly-condensation of organic precursors. Their morphological and chemical structures depend on reaction conditions during the poly-condensation. In this study, two p-C3N4 materials are produced by heat treatment of urea under different gaseous conditions with air (urea-derived carbon nitride under air, UCN-A) and N2 (UCN-N), respectively. UCN-A and UCN-N samples are mesoporous materials and show excellent photocatalytic activities for degrading rhodamine B, an organic pollutant, under the irradiation of visible light. The UCN-A shows the better photocatalytic activity than UCN-N. Various characterizations reveal that more porous structures and larger surface areas of UCN-A are reasons for the better photocatalytic performance.
        4,000원
        5.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermoelectric materials and devices are energy-harvesting devices that can effectively recycle waste heat into electricity. Thermoelectric power generation is widely used in factories, engines, and even in human bodies as they continuously generate heat. However, thermoelectric elements exhibit poor performance and low energy efficiency; research is being conducted to find new materials or improve the thermoelectric performance of existing materials, that is, by ensuring a high figure-of-merit (zT) value. For increasing zT, higher σ (electrical conductivity) and S (Seebeck coefficient) and a lower к (thermal conductivity) are required. Here, interface engineering by atomic layer deposition (ALD) is used to increase zT of n-type BiTeSe (BTS) thermoelectric powders. ALD of the BTS powders is performed in a rotary-type ALD reactor, and 40 to 100 ALD cycles of ZnO thin films are conducted at 100oC. The physical and chemical properties and thermoelectric performance of the ALD-coated BTS powders and pellets are characterized. It is revealed that electrical conductivity and thermal conductivity are decoupled, and thus, zT of ALD-coated BTS pellets is increased by more than 60% compared to that of the uncoated BTS pellets. This result can be utilized in a novel method for improving the thermoelectric efficiency in materials processing.
        4,000원
        8.
        2022.10 구독 인증기관·개인회원 무료
        Deep geological disposal is generally accepted to be the most practical approach to handling radioactive wastes. Bentonite has been considered as a buffer material in deep geological disposal repositories (DGR) for high-level radioactive wastes. Evaluating the effect of short-term bentonite alteration on EBS performance has limitations in safety assessment over thousands of years. Information on bentonite characteristics under various conditions obtained from natural systems can be used to evaluate long-term safety of bentonite buffer. The purpose of this study was to investigate mineralogical and physicochemical characteristics of bentonite in the Naah mine located in Yangnam-myeon, Gyeongju-si for a natural analogue of the bentonite barrier in DGR. A total of 15 samples were collected at regular intervals from the bentonite layer and andesitic lapilli tuff (i.e., parent rock) at the boundary with the bentonite layer. The bentonite layer is located at a depth of about 1 m below the ground surface. Each sample was separated into particles < < 75 μm and particles < 2 μm through grinding and sedimentation processes. The separated subsamples were characterized mineralogically and physiochemically using various analytic techniques. Bentonite samples have a similar SiO2/Al2O3 ratio to the parent rock and a lower (Na+K)/Si ratio than the parent rock, indicating depletion of alkali components during bentonitization. The parent rock and bentonite samples have similar mineral composition (i.e., quartz, feldspars, opal-cristobalite-tridymite and montmorillonite). Results of XRD analysis on the randomly distributed particles < 2 μm indicate that bentonite is mostly composed of Ca-montmorillonite, which is a typical dioctahedral smectite. Results of FTIR and VNIR analysis indicate that montmorillonite contained in bentonite is Al-dioctahedral montmorillonite, and Al is substituted with Mg in some octahedron units. The mineralogical and physicochemical characteristics are similar regardless of sampling location. These results suggest that bentonite potentially exposed to weathering, located near the ground surface, has hardly altered.
        9.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to examine the changes in dry matter yield and growth characteristics of alfalfa (Medicago sativa L.) in response to variations in sowing dates during the autumn season of 2021-22 in a dry paddy field of Chilbo-myeon, Jeongeup-si, Jeollabuk-do. Treatments comprised four sowing dates at 10-day intervals, i.e., October 8, October 18, October 28, and November 8, 2021. The winter survival rate of alfalfa showed a significant difference between different treatments but was at a satisfactory level for all (p<0.05). The winter survival rate for the fourth sowing date, a month later than the first sowing date, was approximately 11.7% lower than that for the first sowing date. The plant height ranged between 82.3–93.1 cm and 60.5–63.7 cm at the first and second harvest, respectively, smaller at the second harvest than at the first harvest. The total dry matter yield of alfalfa was the highest at 13,316 kg/ha for the first sowing date, and the later the sowing date, the lower the dry matter yield. The protein content of alfalfa ranged between 13.6–17.3% in the first harvest, lower than the standard alfalfa protein content of 20% or more. In relative feed value, the first sowing (Oct. 8) was the most significantly higher in the first harvest (p<0.05). These results suggest that the early and mid-October sowing dates are optimum for sowing alfalfa during autumn and result in improved plant growth, dry matter yield, protein content, and winter survival compared to those at later sowing dates. Therefore, dry paddy fields can be safely employed for alfalfa cultivation with sowing dates in early and mid-October during autumn.
        4,000원
        11.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study deals with replacement analysis of deteriorated equipment for improving productivity of production system. Frequent breakdown of the deteriorated equipment causes a situation that reduces productivity such as low product quality, process delay, and repair cost. However, the replacement of new equipment will be required a high initial investment cost, so it is important to analysis the economic feasibility. Therefore, we analyze the effect of the production system due to the aging effect of the equipment and the feasibility of equipment replacement based on the economic analysis. The process flow, working time, logistics movement, etc. are analyzed in order to build the simulation modeling for a ship and land switchboard production system. Using numerical examples, the economic feasibility analysis of equipment replacement through replacement of existing deteriorated equipment and additional arrangement of new facilities is performed.
        4,000원
        12.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the near-complete genome sequence of the novel reassortant H1N2 influenza A virus strain A/swine/Korea/KS60/2016 is reported. Sequences of the hemagglutinin (HA), neuraminidase (NA), and polymerase basic 2 (PB2) genes were analyzed, revealing that the isolates contain segments from previous Korean swine H1N2 strains. Additionally, the remaining genes of this strain originated from human H1N1 strains in 2009.
        3,000원
        17.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cymbidium ‘Aroma Pink’는 국립원예특작과학원에서 2017년 도에 육성한 신품종으로, 2000년에 C. Lucky Rainbow ‘Lapin Hot’과 C. eburneum을 인공교배하여 개발된 품종이다. 교배 후 기내파종과 하우스 순화를 통해 120개의 실생묘를 얻었고, 그 중 화색, 엽형, 꽃대 및 생육특성 등을 고려하여 3계통을 1차 선발하였고, 2011년부터 2016년까지 특성 검정을 통하여 품종의 안정성과 균일성을 확인하였다. 그 결과, 최종적으로 ‘00-1174-100’한 계통을 선발하였고 ‘원교 F1-62’로 계통명을 부 여한 후, ‘Aroma Pink’로 명명하였다. ‘Aroma Pink’ 품종은 백 색 바탕에 꽃받침 일부가 연한 분홍색, 순판 가운데가 노란색 을 띄며 화형은 꽃잎과 꽃받침이 약간 안쪽으로 오므라드는 안 아피기 형태이며 꽃의 길이와 폭은 6.1cm, 5.2cm로 작은 편이다. 전체적으로 동그란 화형과 중형종 크기는 모본인 C. Lucky Rainbow ‘Lapin Hot’과 유사하나 진한 적색 순판 대신 부본의 노란색 순판과 화색을 닮아 강렬한 느낌보다는 전체적으로 화 사한 느낌을 준다. 꽃대는 평균 2.9개 발생하고 화서당 꽃 수 가 6.5개로 적은 편에 속하지만, 부본인 C. eburneum 원종의 향기를 가지고 있다. 또한 직립한 꽃대에 늘어짐이 적은 잎을 가져 전체적으로 안정적인 형태를 이루며 개화시기는 3월경으 로 만생종에 속한다. 한편 고온에 의해 화색이 탁해질 수 있 으나, 전반적으로 재배 관리가 용이한 편이다.
        4,000원
        18.
        2020.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzed the nutritional composition properties of soybeans and the antioxidants, isoflavones, organic acids, and volatile flavor compounds of fermented black soybean products (FBSP). After 24 hours of fermentation, the range of water uptake ratio was 129.00-131.30%, respectively. Total polyphenols content and DPPH and ABTS radical scavenging activity were higher in Cheongja-3 FBSP, flavonoids in Socheongja, while DPPH and ABTS radical scavenging activities were similar in Cheongja-3 FBSP. Isoflavone contents of aglycones (daidzein, genistein, and glycitein) in Cheongja-4 FBSP increased up to 41.97 μg/g. The rank order of primary organic acids was citric acid > fumaric acid > acetic acid > lactic acid, with Cheongja-3 FBSP being the highest. This study identified a total of 34 volatile aroma-compounds, including seven alcohols, seven acids, seven ketones, five phenols, two esters, one furan, four pyrazines, and one miscellaneous. The result could be applied to determine the suitability of cultivars and the quality of the process used for fermented soybean products.
        4,000원
        19.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to evaluate the quality properties of Meju prepared by inoculating two strains of Bacillus amyloliquefaciens HJ5-2, and Aspergillus oryzae PS03. The three soybean varieties that include Daewonkong, Daechan, and Saedanbaek were used in this experiment. The fermentation temperature during the Meju aging varied at 20℃, 30℃, and 40℃, respectively. The physicochemical analysis of the soybeans, showed that the cured protein and fat contents were 34.83~43.49% and 12.91~18.90%, respectively. The pH and total acidity were 6.47~6.93 and 0.11~1.22%, respectively. The change in appearance of the Meju was that the yellow-green mold was well formed on seven days at fermentation temperature of 20℃ and 30℃, but at 40℃, there was minimal mold formation and cracking of the surface. The amino nitrogen content was highest on the Daechan Meju at 621.83 mg% for seven days. The amylase increased as the fermentation period increased in all samples, and the protease increased rapidly until the first day of the fermentation, and then gradually increased thereafter. The total number of bacteria increased or decreased as the fermentation proceeded to 6.66~10.07 log CFU/g. The mold counts increased with increasing fermentation period in the range of 6.38~8.79 log CFU/g.
        4,000원
        20.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        농촌진흥청 국립원예특작과학원에서는 2017년에 절화 수명이 길고 수량이 많은 연한 핑크색의 스프레이 장미 ‘Pink Shine’ 을 육성하였다. 모본은 ‘Fire Flash’로 붉은 복색의 스프레이 장미이며, 부본은 ‘Pink Charm’으로 핑크색이며 흰가루병에 강하다. 이 두 품종을 2012년 인공교배하여 이듬해인 2013년 1월에 파종, 9cm 포트 묘에 정식하여 관능 평가 실시 후 도태시켜 39개체 의 실생을 얻었다. 이후 화형, 화색, 꽃잎 수, 절화수량, 병 저항성 등을 고려하여 2015년까지 5개체를 선발하여 유사 품종인 ‘Missha’를 대조로 하여 2017년까지 3차에 걸친 특성 검정을 실시하였다. 그 결과 가장 우수한 ‘원교 D1-325’를 최종선발하여 ‘Pink Shine’으로 명명 후 2018년 3월 22일 품종보호출원(제 2018-212호)하여 2019년 6월 21일에 품종보호권(제7786호)이 등록되었다. 화색은 연한 핑크색(RHS, R36D)이며 잎의 색은 녹색(RHS, G137A)으로 대조 품종 ‘Missha’와 동일하였다. 꽃잎 수는 67.8개, 화폭 5.4cm, 화고 3.2cm로 ‘Missha’보다 컸으며 평방미터당 연간 절화수량은 131본, 절화수명은 15.3일로 ‘Missha’ 보다 우수하였다.
        4,000원
        1 2 3 4 5