Various transition metal oxides are deposited on the surface of materials such as stainless steel, which is used in the coolant systems of nuclear power plants. The task of removing harmful radionuclides can be solved through the dissolution reaction of the deposited corrosion oxide layer. In this study, for the first time, the reaction thermodynamics of the hydrazine-based reductive metal ion decontamination (HyBRID) reaction developed by the Korea Atomic Energy Research Institute were studied considering the formation of a strong ion − ligand chemical bond complex between Cu ions and hydrazine. When considering complex formation, we found that it had a significant impact on the thermodynamic decontamination reactions of magnetite, nickel ferrite, and chromite. The reactions were proven to be much more thermodynamically favorable than the reaction energies reported thus far, which did not consider complex formation. We demonstrated that not only the thermodynamic energy but also the structures of the HyBRID reaction products can be significantly changed, depending on complex formation considerations.
To improve the lithium-ion battery performance and stability, a conducting polymer, which can simultaneously serve as both a conductive additive and a binder, is introduced into the anode. Water-soluble polyaniline:polystyrene sulfonate (PANI:PSS) can be successfully prepared through chemical oxidative polymerization, and their chemical/mechanical properties are adjusted by varying the molecular weight of PSS. As a conductive additive, the PANI with a conjugated double bond structure is introduced between active materials or between the active material and the current collector to provide fast and short electrical pathways. As a binder, the PSS prevents short circuits through strong π‒π stacking interaction with active material, and it exhibits superior adhesion to the current collector, thereby ensuring the maintenance of stable mechanical properties, even under high-speed charging/discharging conditions. Based on the synergistic effect of the intrinsic properties of PANI and PSS, it is confirmed that the anode with PANI:PSS introduced as a binder has about 1.8 times higher bonding strength (0.4 kgf/20 mm) compared to conventional binders. Moreover, since active materials can be additionally added in place of the generally added conductive additives, the total cell capacity increased by about 12.0%, and improved stability is shown with a capacity retention rate of 99.3% even after 200 cycles at a current rate of 0.2 C.
With the emergence of the new energy field, the demand for high-performance lithium-ion batteries (LIBs) and green energy storage devices is growing with each passing day. Carbon nanotubes (CNTs) exhibit tremendous potential in application due to superior electrical and mechanical properties, and the excellent lithium insertion properties make it possible to be LIBs anode materials. Based on the lithium insertion mechanism of CNTs, this paper systematically and categorically reviewed the design strategies of CNTs-based composites as LIBs anode materials, and summarized in detail the enhancement effect of CNTs fillers on various anode materials. More importantly, the superiorities and limitations of various anode materials for LIBs were evaluated. Finally, the research direction and current challenges of the industrial application of CNTs in LIBs were prospected.
Colorectal cancer (CRC) poses a significant global public health challenge, accounting for 10% of newly diagnosed cancer cases and causing 9.4% of cancer-related deaths. Conventional treatment methods like surgery, chemotherapy, and radiation have shown limited success despite the increasing incidence of CRC. Thus, there is an urgent need for innovative therapeutic approaches. Researchers are continually working on developing novel technologies, notably focused on the creation of safe and effective cancer nanomedicines, in their continuous effort to advance cancer treatment. Nanoparticles exist at the nanoscale. Nanoparticles at the nanoscale have distinctive properties that leverage the metabolic disparities between cancerous and normal cells. This property allows them to selectively induce substantial cytotoxicity in cancer cells while minimizing damage to healthy tissue. Carbon nanomaterials (CNMs), including graphene oxide (GO), carbon nanotubes (CNTs), and nanodiamonds (NDs), have undergone extensive investigation due to their biocompatibility, surface-to-volume ratio, thermal conductivity, rigid structural properties, and ability for post-chemical modifications. Notably, GO has emerged as a promising two-dimensional (2D) material for cancer treatment. Several groundbreaking nanoparticle-based therapies, predominantly utilizing GO, are currently undergoing clinical trials, with some already gaining regulatory clearance.
This study investigates how adding cognitive stimulation to exercise impacts overall outcomes. Cognitive stimulation involves engaging mental processes like attention, memory, and problem-solving while being physically active. The intervention integrates activities that challenge mental functions into exercise routines. Existing research suggests that such interventions can improve various aspects of exercise performance, such as adherence, enjoyment, and perceived effort. Additionally, they may also lead to enhanced cognitive function and mental well-being, hinting at potential combined benefits of mental and physical activity. Understanding the effects of cognitive stimulation on exercise can help in developing more effective strategies for promoting both physical and cognitive health. In summary, physical exercise emerges as a powerful tool for enhancing cognitive stimulation and mental well-being. By making regular physical activity a habit, individuals can reap cognitive benefits alongside physical ones, underlining the importance of including exercise in daily routines for optimal cognitive function and overall health.
This study is a descriptive research study to confirmed the mediating effect of career adaptability in the relationship between growth mindset and career preparation behavior in order to improve the career preparation behavior of nursing students. The subjects of the study were second, third, and fourth year students attending nursing departments at two universities located in cities G and M.. The data were collected from May to June 2024. Analysis of the collected data was performed using descriptive statistics, Pearson correlation coefficient, and Baron-Kenny regression analysis. As a result of the study, first, growth mindset showed a positive effect(β=.397, p<.001) on career adaptability. Second, growth mindset showed a positive effect(β=.337, p<.001) on career preparation behavior. Third, growth mindset (β=138, p<.001) and career adaptability (β=.502, p<.001) each had a statistically significant impact on career preparation behavior. As a result, it was confirmed that career adaptability has a partial mediating effect between growth mindset and career preparation behavior. Therefore, it can be seen that the higher the growth mindset, the more career adaptability is promoted, which in turn promotes career preparation behavior. Based on these research results, in order to improve the career preparation behavior of nursing students, growth mindset and career adaptability should be promoted in the field of nursing education.
This study aims to develop a detailed sizing system for lower body clothing for elderly obese women, using data from the 8th Korean Anthropometric Survey. The research targets 296 elderly women aged 60 to 85, selected from 805 participants in total, who meet the following criteria: Rohrer Index of 1.6 or above, Body Mass Index of 25 or higher, and Waist-Hip Ratio of 0.85 or greater. Elderly women with abdominal obesity exhibit shorter lower body proportions and greater fat accumulation in the torso, around the chest and waist. The findings show that women in their 60s have the highest level of obesity, while waist width and thickness are greatest in women in their 70s, suggesting that abdominal obesity increases with age. According to the KS standards, the main measurement categories were divided into 5cm increments for height, while waist and hip girth were categorized into 5cm and 3cm, respectively, to analyze the distribution of sections. Clothing size standards for lower garments that require a precise fit, such as skirts and formal pants, are presented in 13 sizes, corresponding to a waist girth range of 85–100cm and a hip girth range of 88–97cm. Detailed measurements are categorized into primary and reference areas. Additionally, sizes were presented differently based on whether a precise fit was necessary. For items that did not require a precise fit, ranges were indicated with letters, or ranges were indicated with measurements. Detailed sizes were categorized into primary and reference areas.
선박의 조종성능은 조선해양공학 분야에서 매우 중요한 유체역학적 성능 중 하나입니다. 본 연구에서는 저수심에서 운용되는 24m급 쌍동선을 대상으로 직진성능 분석에 대한 연구를 진행하였습니다. Skeg의 설치를 통해 조종성능을 개선할 수 있는지 여부를 확인 하기 위해, 전산유체역학(CFD) 수치해석 시뮬레이션을 활용하여 가상의 포획 모형테스트를 진행하였습니다. 시뮬레이션은 PMM(Planar Motion Mechanism) 조화 시험 중 Pure-sway 및 Pure-Sway motion, 2가지 시험을 진행하였으며, 선박의 선회성능은 직진성능 지수(C)의 경험식 을 통해 확인하였습니다, 결론적으로, Skeg가 없는 기존 선체는 직진성능이 상대적으로 저조하며, Skeg 1을 적용해도 부정적인 C 지수 값 을 보여 항로유지 능력이 개선되지 않았다. 하지만 Skeg 2, 3 또는 4를 적용하였을 때, 긍정적인 C 지수 값을 보여 항로유지 능력이 개선 되는 것을 보이며, 이는 Sway motion의 드리프트 경향에 비해 선체가 Yaw 또는 방향을 더 바꾸기 쉽다는 것을 나타낸다.
This study analyzes the discourse of Korean internet users regarding patient clothing and identifies the changes to structure and content of clothing resulting from infectious disease outbreaks. The analysis draws on texts from Korean blogs, internet cafes, and news articles from 2011 to 2021 related to patient clothing. Using Ucinet 5 and NodeXL 1.0.1 programs, network density, centrality, and cluster analyses were conducted using the Wakita–Tsurumi algorithm. Additionally, Latent Dirichlet Allocation (LDA) topic modeling was applied using Python 3.7 to further explore thematic patterns within the discourse. Throughout the period of study, it was found that users consistently discussed the specific purpose and functionality of patient clothing. Following the outbreak of COVID-19, the distribution and influence of keywords related to the functional aspects of patient clothing, such as “hygiene and safety,” significantly increased. An increased focus was placed on elements such as functionality, activity, autonomy, hygiene, and safety during the pandemic as public health concerns grew. It can be seen that patients increasingly share their experiences online and hospitalization rates surge during health crises; this study provides valuable insights into how the design of patient clothing can be improved through various informatics techniques. It underscores the evolving perception of patient clothing as essential medical equipment during health emergencies. In addition, it offers practical guidance for enhancing designs that better reflect shifting societal concerns, particularly regarding health, safety, and patient comfort.
폭풍해일 및 너울과 같은 고파랑으로 인해 발생되는 월파는 심각한 연안 침수 위험을 초래하며, 연안 시설과 주민의 안전을 위해 정확한 예측이 필요하다. 본 연구는 수치적, 경험적, 신경망, 그레디언트 부스팅(gradient boosting) 및 컴퓨터 비전 기반 모델들을 사용 하여 해안선 인근의 파고와 월파량을 포함한 월파 특성을 조사하였다. 동해안을 대상으로 한국 기상청(KMA), 일본 기상청(JMA), 미국 국 립환경예측센터(NCEP), 유럽 중기기상예보센터(ECMWF)의 기상데이터를 사용하여 ADCIRC 모델과 SWAN 모델을 결합하여 파고를 계산 하였다. 월파 감지용 CCTV가 설치된 동해안의 삼척항을 대상지역으로 선정하였다. CCTV에서 촬영된 영상들을 YOLO를 사용하여 분석하 였으며, 화면 내의 처오름 현상을 감지하였다. 수치모형의 성능은 예측된 파도 특성과 관측값을 비교하여 정성적, 정량적 측정을 통해 평 가하였다. 수치모형의 성능은 파고 예측에서 우수한 것으로 분석되었으며, 태풍과 비태풍 조건에서 파고는 각각 0.60m와 0.44m의 최소 RMSE이고 주기는 각각 1.68m와 1.84m의 RMSE로 분석되었다. 본 연구결과에 의하면 실시간 모니터링은 월파 특성에 대한 신뢰할 수 있는 예측 가능성을 가진다. 실시간 모니터링은 해안지역 보호를 위한 신속한 위험 평가 및 실시간 경보 제공에 활용될 수 있다.
In this study, ferric phosphate precursors were prepared by controlling precipitation time, and the resulting LiFe PO4 active materials were thoroughly investigated. Microscale LiFePO4 cathode materials, designed for high energy density at the cell level, were successfully synthesized through a 10 h co-precipitation. As the reaction time increased, smaller primary particles were aggregated more tightly, and the secondary particles exhibited a more spherical shape. Meanwhile, ammonia did not work effectively as a complexing agent. The carbon coated LiFePO4 (LiFePO4/C) synthesized from the 10 h ferric phosphate precursor exhibited larger primary and secondary particle sizes, a lower specific surface area, and higher crystallinity due to the sintering of the primary particles. Enhanced battery performance was achieved with the LiFePO4/C that was synthesized from the precursor with the smaller size, which exhibited the discharge capacity of 132.25 mAh ‧ g-1 at 0.1 C, 70 % capacity retention at 5 C compared with 0.1 C, and 99.9 % capacity retention after the 50th cycle. The better battery performance is attributed to the lower charge transfer resistance and higher ionic conductivity, resulting from smaller primary particle sizes and a shorter Li+ diffusion path.
Lithium-ion batteries are widely used in various advanced devices, including electric vehicles and energy storage devices. As the application range of lithium-ion batteries expands, it will be increasingly important to improve their gravimetric and volumetric energy density. Layer-structured oxide materials have been widely adopted as cathode materials in Li-ion batteries. Among them, LiNiO2 has attracted interest because of its high theoretical capacity, ~274 mAh g-1, assuming reversible one Li+-(de)intercalation from the structure. Presently, such layered structure cathode materials are prepared by calcination of precursors. The precursors are typically hydroxides synthesized by coprecipitation reaction. Precursors synthesized by coprecipitation reaction have a spherical morphology with a size larger than 10 μm. Spherical precursors in the several micrometer range are difficult to obtain due to the limited coprecipitation reaction time, and can lead to vigorous collisions between the precursor particles. In this study, spherical and small-sized Ni(OH)2 precursors were synthesized using a new synthesis method instead of the conventional precipitation method. The highest capacity, 170 mAh g-1, could be achieved in the temperature range of 730~760 °C. The improved capacity was confirmed to be due to the higher quality of the layered structure.
3D printing using ceramic powder to produce precision ceramic parts has been studied with various additive manufacturing methods. This study analyzed problems occurring in alumina additive manufacturing that uses digital light processing (DLP) as well as methods to address such problems. For efficient analysis, we have classified alumina additive manufacturing into three types according to the driving method of the build platform - lifting type (LT), tilting type (TT) of the vat, and blade movement type (BT). LT had a problem with detachment and cracking of the alumina green body. However, this could be prevented by carefully controlling the cure depth of the suspension slurry and the bonding force between layers and improving the material used for coating the vat. TT, which resulted in non-uniform alumina additive manufacturing, could be improved by modifying the bidirectionality of the axis and the fluidity of the highly viscous alumina suspension slurry. BT resulted in detachment of the specimen as well as non-uniform results, but this could be avoided by shortening the shifting distance of the alumina suspension when it is introduced to the build platform, and enabling effective spreading.
River discharge is a crucial indicator of climate change and requires accurate and continuous estimation for effective water resource management and environmental monitoring. This study used satellite gravimetry data to estimate river discharge in major basins with high discharge volumes, specifically the Congo and Orinoco basins. By enhancing the spatial resolution of gravity data through advanced post-processing techniques, including forward modeling and river routing schemes, we effectively detected changes in the water mass stored within river channels. Additionally, signals from surrounding regions were statistically removed using the Empirical Orthogonal Function (EOF) analysis to isolate river-specific discharge signals. These refined signals were then converted into river discharge data through seasonal calibration using the modeled discharge data. Our results demonstrate that this method yields accurate and reliable discharge estimates comparable to in-situ measurements from gauge stations, even without ground-based surveys such as an Acoustic Doppler Current Profiler (ADCP) field campaigns. This research highlights the significant potential of satellite-based gravity data as an alternative to traditional ground surveys, providing practical information on the hydrological status of regions associated with large-scale river systems.
본 연구는 제주도 모슬포 해역에서 채집된 대형 포식성 복족류인 붉은입두꺼비고둥(Tutufa bufo) 두 개체를 대상 으로 테트로도톡신(TTX) 존재 여부를 조사하였다. 일본에 서 채집된 붉은입두꺼비고둥의 내장에서 TTX가 검출된 사례가 보고된 바 있으며, 최근 제주도 남부 해역에서 해 당 종이 혼획되고 있으나, 한국 해역에 분포하는 붉은입 두꺼비고둥의 TTX 축적에 대한 정보는 부족하다. 이에 본 연구에서는 경쟁적 효소면역분석법(cELISA) 을 사용하여 붉은입두꺼비고둥의 주요 연조직(전타액선, 구강부, 소화 선, 생식소, 아가미, 신장, 근육, 후타액선)을 분석하였다. 분석 결과, 모든 조직에서 TTX 농도는 검출 한계 미만으 로 나타났다. 그러나 TTX 축적에는 개체 간, 지역적, 계 절적 변동 가능성이 존재할 수 있으므로, 한국 해역에서 붉은입두꺼비고둥의 TTX 축적 위험을 정확하게 평가하기 위해서는 추가적인 시료 확보와 계절별 연구가 요구된다.
마비성 패류독소 중독증(paralytic shellfish poisoning; PSP)은 삭시톡신과 그 유사체로 오염된 패류를 섭취했을 때 발생하며, 저림, 구토 등의 증상에서부터 근육 마비와 심각한 경우 호흡 마비로 이어져 사망에 이를 수 있다. 독 성등가계수(toxic equivalency factors; TEFs)는 다양한 마 비성 패류독소의 독성을 표준화하여 위험성을 평가하는 데 사용된다. 마비성 패류독소를 검출하기 위해 사용되던 마우스 생체 실험(mouse bioassay; MBA)에 대한 윤리적 문제가 제기되면서 고성능액체크로마토그래피와 같은 기 기 분석법으로의 전환이 시도되고 있지만, 유사체들의 적절 한 TEF를 설정하기 위해서는 여전히 동물 모델을 통한 생 체 내 독성 데이터가 필수적이다. 본 연구에서는 동물 수를 줄이면서도 신뢰할 수 있는 경구투여 독성 결과를 얻기 위 해 삼단계 반응표면-경로 (three-level RSP) 설계를 사용했다. 인증 표준 물질을 이용하여 각 독소의 초기 용량과 조정 계 수를 결정하고 시험을 진행했으며, STX.2HCl, NeoSTX, dcSTX, GTX1&4, GTX2&3, dcGTX2&3의 반수치사량 (및 TEF) 값은 각각 451.3 (1.00), 306.5 (1.47), 860.9 (0.52), 644.5 (0.70), 915.3 (0.49), 2409.3 (0.19)로 나타났다. 도출된 TEF 값은 2016년 WHO에서 권고한 TEF 값뿐만아니라, 이 전에 보고된 경구 투여 반수치사량을 기반으로 한 TEF 값 과 강한 상관관계를 보였다. 본 연구는 마비성 패류독소 뿐 만 아니라 신규 미관리 해양생물독소에 대해 적절한 TEF를 설정하는 데 있어 삼단계 반응표면경로 설계를 윤리적 우 려와 신뢰할 수 있는 독성 데이터의 필요성 사이에서 효과 적으로 균형을 맞출 수 있는 방법으로 제안한다.
The AlSi10Mg alloy has garnered significant attention for its application in laser powder bed fusion (L-PBF), due to its lightweight properties and good printability using L-PBF. However, the low production speed of the L-PBF process is the main bottleneck in the industrial commercialization of L-PBF AlSi10Mg alloy parts. Furthermore, while L-PBF AlSi10Mg alloy exhibits excellent mechanical properties, the properties are often over-specified compared to the target properties of parts traditionally fabricated by casting. To accelerate production speed in L-PBF, this study investigated the effects of process parameters on the build rate and mechanical properties of the AlSi10Mg alloy. Guidelines are proposed for high-speed additive manufacturing of the AlSi10Mg alloy for use in automotive parts. The results show a significant increase in the build rate, exceeding the conventional build rate by a factor of 3.6 times or more, while the L-PBF AlSi10Mg alloy met the specifications for automotive prototype parts. This strategy can be expected to offer significant cost advantages while maintaining acceptable mechanical properties of topology-optimized parts used in the automobile industry.
Aluminum-based composites are in high demand in industrial fields due to their light weight, high electrical conductivity, and corrosion resistance. Due to its unique advantages for composite fabrication, powder metallurgy is a crucial player in meeting this demand. However, the size and weight fraction of the reinforcement significantly influence the components' quality and performance. Understanding the correlation of these variables is crucial for building high-quality components. This study, therefore, investigated the correlations among various parameters—namely, milling time, reinforcement ratio, and size—that affect the composite’s physical and mechanical properties. An artificial neural network model was developed and showed the ability to correlate the processing parameters with the density, hardness, and tensile strength of Al2024-B4C composites. The predicted index of relative importance suggests that the milling time has the most substantial effect on fabricated components. This practical insight can be directly applied in the fabrication of high-quality Al2024-B4C composites.
This review examines the microstructural and mechanical properties of a Ti-6Al-4V alloy produced by wrought processing and powder metallurgy (PM), specifically laser powder bed fusion (LPBF) and hot isostatic pressing. Wrought methods, such as forging and rolling, create equiaxed alpha (α) and beta (β) grain structures with balanced properties, which are ideal for fatigue resistance. In contrast, PM methods, particularly LPBF, often yield a martensitic α′ structure with high microhardness, enabling complex geometries but requiring post-processing to improve its properties and reduce stress. The study evaluated the effects of processing parameters on grain size, phase distribution, and material characteristics, guiding the choice of fabrication techniques for optimizing Ti-6Al-4V performance in aerospace, biomedical, and automotive applications. The analysis emphasizes tailored processing to meet advanced engineering demands.