Secretory leukocyte protease inhibitor (SLPI), also known as neutrophil elastase and cathepsin-G protease inhibitor, functions in protection of epithelial cells from proteases. SLPI is expressed and secreted by many mucosal tissues, including lungs, seminal vesicles and cervix in women. SLPI plays an important role in protection of endometrial epithelial cells during pregnancy from degradation by degradation by proteases derived from trophoblast at the maternal-conceptus interface. In pigs, SLPI mRNA is known to be expressed in endometrial tissues, but the expression of SLPI in the endometrium throughout the estrous cycle and pregnancy has not been determined. Therefore, we analyzed the expression and regulation of SLPI mRNA in the endometrium throughout the whole stages of the estrous cycle and pregnancy in pigs. We obtained endometrial tissues from gilts on Days 0 (day of estrus), 3, 6, 9, 12, 15, and 18 of the estrous cycle and on Days 10, 12, 15, 30, 60, 90, and 114 of pregnancy. Real-time RT-PCR analysis showed that the expression of SLPI mRNA in the endometrium increases during midt-o late pregnancy. During the estrous cycle, levels of SLPPI mRNA in estrus and proestrus were higher than those in diestrus and metestrus. In situ hybridization analysis showed that SLPI mRNA was specifically localized to the glandular epithelial cells in the endometrium during pregnancy with strong signal intensity during mid-to late pregnancy. SLPI mRNA was not detectable in conceptus tissues on Days 12 and 15 of pregnancy, but SLPI mRNA was expressed in chorioallantoic tissues during mid-to term pregnancy with increasing levels toward term pregnancy. To determine the effects of steroid hormones, estrogen and progesterone, on the expression of SLPI mRNA, endometrial explant tissues from immature pigs were treated with increasing doses of estradiol-17β (E2) and progesterone (P4). Increasing doses of E2 and P4 increased the expression of SLPI mRNA in endometrial tissues. These results showed that SLPI was expressed in the endometrium in a pregnancy stage-and cell type-specific manner and the expression of SLPI was regulated by E2 and P4 in endometrial tissues, suggesting that SLPI may play an important role in regulating the endometrial epithelial cell function during mid-to late pregnancy in pigs. Further analysis to determine the roles of SLPI at the maternal-conceptus interface is still needed.
Preimplantation embryonic production in vitro is important in human assisted reproductive technology and animal embryo engineering. Icariin (ICA) is one type of flavonoids and a main component isolated from the stem leaf of Epimedium brevicornum. Flavonoids, which are among the best well-studied natural antioxidants, have been demonstrated to be active in clearing reactive oxygen species (ROS). The purpose of this study was to investigate the effects of ICA treatment during porcine oocyte in vitro aging and their in vitro developmental competency after parthenogenetic activation (PA). Porcine oocytes were matured in vitro for 44 h (control) and for an additional 24 h in the presence of 0, 5 μM ICA (aging, ICA-5), respectively. This study investigated the effects of ICA on nuclear maturation, ROS level, apoptosis index, and the developmental capacity of aged porcine oocytes. Oocyte survival was not different in aging group compared to control or ICA-5 group. The increased ROS level during in vitro aging was prevented in ICA-5 group, while GSH level was not decreased. The decrease of normal spindle formation during in vitro aging was prevented in ICA-5 group. After PA, although the cleavage rate was not different among treatment groups, the blastocyst formation was significantly higher in control and ICA-5 group than in aging group. However, there was significantly difference in the apoptotic index of the ICA-5 group, while it was no difference in the total cell number of the ICA-5 group. (p<0.05). Therefore, this result demonstrated that the ICA is an effective agent to prevent the deterioration during in vitro aging of porcine oocytes.
Generally, in vivo, primary oocytes are grown and matured into secondary oocytes in the ovarian follicles. Quality of the oocytes matured in vivo is higher than that of oocytes matured in vitro, indicating the importance of materializing the microenvironment of ovarian follicles for production of high quality oocyte. Therefore, we tried to mimic the stiffness of ovarian follicles using an agarose as a biocompatible natural polymer. Unfortunately, to date, there are no many reports on whether the quality of porcine oocytes can be increased effectively under the soft matrix. Accordingly, we tried to evaluate the effects of IVM using different mechanical properties of agarose substrate on developmental competence of porcine oocytes. Agarose substrate was constructed and cumulus-oocyte-complexes (COCs) retrieved from porcine medium antral follicles were matured on non-coated (control) culture dish or dishes coated with 1% and 2% (w/v) agarose substrate. Then, cumulus expansion, embryonic development after parthenogenetic activation, and gene expression level were analyzed and compared. As the results, significant increase in blastocyst formation and cumulus expansion were detected in COCs matured on 1% (w/v) agarose substrate compared with control. Moreover, oocytes of COCs matured on 1% (w/v) agarose substrate showed significantly higher BMP15 expression level compared with control. Pro-apoptotic gene BAX expression was significantly increased in oocytes of COCs matured on 2% (w/v) agarose substrate compared with control. In the glycolytic enzyme phosphofructokinase (PFKP) gene expression, cumulus cells of COCs matured on agarose substrate showed significantly higher PFKP expression than control while they showed significantly lower BAX expression than control. These results demonstrated that quality of porcine oocytes could be increased efficiently by the IVM of immature oocytes on the soft culture matrix using agarose.
This study was conducted to evaluate the effects of insulin and epidermal growth factor (EGF) in a in vitro growth (IVG) medium on oocyte growth, in vitro maturation (IVM) and embryonic development of pig oocytes derived from small antral follicles (SAF) less than 3 mm in diameter. SAF oocytes were cultured for 2 days to induce IVG in alpha-minimal essential medium supplemented with 1 mM dbcAMP and 15% (v/v) fetal bovine serum. After IVG culture, oocyte maturation was induced by culturing IVG oocytes in IVM medium for 44 h. IVM oocytes that extruded the first polar body were selected and induced for parthenogenesis (PA) by applying electric stimulus. SAF oocytes cultured under the insulin treatment showed a significantly increased (P < 0.05) nuclear maturation (73.8%) compared to those cultured with insulin and EGF (59.8%). After PA, the proportions of blastocysts based on the number of metaphase II oocytes were significantly higher (P < 0.05) in oocytes that were cultured for IVG with insulin, EGF, and insulin + EGF (32.4%, 35.2%, and 34.8%, respectively) than in control (22.9%). IVG oocytes treated with insulin showed an increased oocyte diameter (116.3 μm) compared to those treated with insulin and EGF (114.0 μm) (P < 0.05). Intra-oocyte GSH content significantly increased (1.07 pixels/oocyte) by insulin treatment during IVG compared to that of oocytes treated with insulin + EGF (0.78 pixels/oocyte). These results demonstrate that IVG culture of SAF oocytes under insulin or/and EGF treatment supports oocyte maturation and improves embryonic development to the blastocyst stage after PA in pigs.
U0126 is a highly selective inhibitor of both MEK1 and MEK2, a type of MAPK/ERK kinase. This study was conducted to evaluate the effect of U0126 treatment during in vitro maturation (IVM) on nuclear maturation, intra-oocyte glutathione content, and embryonic development after parthenogenesis (PA). U0126 (5 μM) was supplemented to IVM medium during the first 0 (control), 2, and 4 h. The basic medium used for IVM was medium-199 supplemented with 10% (v/v) porcine follicular fluid (standard), 0.6 mM cysteine, 0.91 mM pyruvate, 75 μg/ml kanamycin, and 1 μg/ml insulin. Immature pig oocytes were matured for 44 h and then oocytes reached metaphase II stage were electrically activated to induce PA. The in vitro culture medium for embryonic development was porcine zygote medium-3 containing 0.3% (w/v) fatty acid-free BSA. When immature oocytes were treated with U0126 during the first 0, 2, 4 h of IVM culture, nuclear maturation was significantly (P < 0.05) increased by the U0126 treatment for 4 h (96.2 ± 1.3%) compared to standard IVM (90.6 ± 2.1%). Cleavage of PA embryos was significantly increased by 4 h- treatment (90.6 ± 2.2%) compared to standard medium (83.9 ± 1.8%). In addition, blastocyst formation of PA embryos was significantly (P < 0.05) increased by the treatment for 4 h (55.8 ± 5.7%) compared to 2 h (38.1 ± 6.1%). The glutathione contents in IVM oocytes were not altered by the U0126 treatments for 0, 2, and 4 h (1.28 ± 0.10, 1.16 ± 0.09, and 1.10 ± 0.09, respectively). Our results demonstrated that 5 μM U0126 treatment during the first 4 h of IVM showed positive effects on nuclear maturation, cleavage, and embryonic development in pigs.
The citrus flavonoid hesperetin has various pharmacological actions, including antioxidant, anti-inflammatory, and anticancer activities. The purpose of this study is to confirm whether the treatment of hesperetin can protect the oocyte from in vitro aging. Porcine oocytes were matured in vitro for 44 h (control) and for an additional 24 h in the presence of 0, 1, 10, 100, and 250 μM hesperetin (aging, H-1, H-10, H-100 and H-250, respectively). This study investigated the effect of different concentration of hesperetin on maturation, and reactive oxygen species (ROS) level, apoptosis index, and the developmental capacity of aging porcine oocytes. In the results, the percentage of cleaved oocytes that reached to the blastocyst stage of H-100 group (37.9 ± 1.1%) was similar to control (38.1 ± 0.8%), and also significantly higher than other aging groups (23.2 ± 0.8%; H-1, 19.7 ± 1.3%; H-10, 26.7 ± 0.6%; and H-250, 18.4 ± 1.6%.)(p<0.05). The H-100 group was significantly decreased ROS activity, and increased the level of glutathione (GSH) and expression of the antioxidant genes (PRDX5, NFE2L, SOD1 and SOD2) compared to the aging group. The H-100 groups prevented aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (GDF9, CCNB1, BMP15 and MOS). Also, it was confirmed that the H-100 group expressed higher level of estrogen receptor than the aging group. Therefore, this result indicated that hesperetin is an effective agent to protect from the oxidative stress during in vitro aging of porcine oocytes.
Mammalian fetal ovaries contains numerous primordial germ cells, however fewer ones can yield mature oocytes due to apoptosis and follicle atresia. Successful in vitro reconstitution of primordial germ cells has recently had a significant effect in the field of assisted reproductive technologies. However, the regulatory mechanisms underlying oogenesis remain unknown and recapitulation of oogenesis in vitro remains unachieved. Therefore, development of methods for obtaining mature oocytes by culturing the fetal ovaries in vitro could contribute to clarify these mechanisms. We adapt an in vitro system for culturing mouse fetal ovaries that support successful follicle assembly and improve oocyte growth and maturation. Ovarian tissues from 12.5 days postcoitum (dpc) fetal mice were cultured in vitro and the matured oocytes were differentiated from primordial germ cells after a 31 days culture period. Our results demonstrate that mouse fetal germ cells are able to form primordial follicles with artificial ovarian cells, and that oocytes within the growing follicles are able to mature normally in vitro. Taken together, this in vitro culture system is expected to aid in the development of new strategies to identify the reasons behind failure of follicle assembly and offer a platform for innovative research into preservation of female germ cells and conservation of endangered species.
The expression of MMPs in the development of the fertilized egg has a very important role in cell configuration. Objective To evaluate the clinical, the effect of differentially expressed MMPs on serum and serum - free medium on the maturation of blastocysts. The expression patterns of MMPs in serum and serum-free medium were compared at 6 h, 18 h and at the blastocyst stage using real-time PCR, ELISA and immunofluorescence. The results showed that the expression of MMPs was increased in the embryos of the serum medium, as a result of analysis of MMPs and TIMPs, MMP-2 was expressed in the cytoplasm of embryos in the serum-free medium, And it was found to be higher in expression than MMP-9. The serum medium was different from the bloodless badge: overall, TIMPs showed a higher expression in the ovarian cells than cyanosis, and TIMP-3 was more pronounced. Development rate of blastocyst according to in vitro culture method was higher than that of serum - free medium (61.22% 60/98) and serum - free medium (48.28% 28/58). Analysis of the protein release locations of MMPs and TIMPs showed that MMPs and TIMPs are highly expressed in serum mediums, focusing on the inner cell mass. However, very low expression appeared in the tropoblast. On the other hand, serum - free medium showed different expression from serum medium and TIMPs expression was generally low.
Therefore, in the case of serum media, the expression of MMPs is highly expressed in the cytoplasm of the fertilized egg, increasing the reconstruction of cells.
The national natural monument of Korea, Jeju Black Cattle (JBC), it is a native species with unique blood line. This cattle breed needs mass production and industrialization to further improve and preserve their characteristics. This study was to examine whether there were differences in in vitro developmental rates according to body weight (<300, 300 ~ 350, 350 ~ 400 and >400 kg) and grade (1++, 1+, 1, 2 and 3), and oocyte donors or non-donors. As a method of IVM, groups of ten cumulus oocyte complexes (COCs) were cultured in 50 μl droplets of maturation medium (TCM199 supplemented with 10% FBS, 0.2 mM sodium pyruvate, 1 μg/ml follicle-stimulating hormone, 1 μg/ml estradiol-17β) under mineral oil at 38.8℃ in an incubator with a 5% CO2 atmosphere for 22 to 24 h. For IVF, 44 ul IVF drop contained 10 oocytes with sperm concentration of 1 × 106 cells/ml, and then 2 μl heparin and 2 μl PHE (20 μM peicillamine, 10 μM hypotaurine, 2 μM epinephrine) were added. For IVC, after 44±2 h of incubation, cleaved embryos were incubated in CR1aa medium containing 3 mg/ml FAF-BSA until day 4 at 38.8℃ in a 5% CO2 incubator. Embryos were then cultured in CR1aa medium containing 10% FBS until day 8. As a result, in vitro development rates were the highest in 350 ~ 400 kg body weight group and in 1++ grade group than other groups (p<0.05). However, there was no difference in in vitro developmental capacity of classified donor and non-donor oocyte groups. This result demonstrated that the better in vitro developmental capacity was obtained in high level originated oocyte groups (350 ~ 400kg, 1++ grade) than in others, while there was no different in donor types.
Poor embryo quality and low blastocyst formation have been major limitations in establishment of cloned embryonic stem cells and production of cloned animals through somatic cell nuclear transfer (SCNT). Aggregation of embryos is a promising method for improving developmental competence of blastocysts. The aim of this study was to improve the blastocyst formation and the quality of parthenogenetic (PA) pig embryos by the aggregation of blastomeres at the 4-cell stage that were cultured in various type of culture dishes with or without phytohemagglutinin (PHA). The PA embryos were produced by the general method of our laboratory. On Day 2 after PA, the zona pellucida of 4 cell-stage embryos were removed by treatment with 0.5% (wt/vol) pronase solution. The 3x zona-free blastomere (ZFB) were randomly distributed in each of the following treatments for aggregation. ZFB were cultured for 5 days at 39℃ in an atmosphere 5% CO2, 5% O2, and 90% N2. In Experiment 1, effect of culture dishes on the aggregation efficiency and developmental competence of PA embryos were investigated. ZFB were cultured on non-coated (control) culture dish or dishes coated with 1% (wt/vol) agarose substrate (AS) or Well of the Well in dishes coated with 1% (wt/vol) agarose substrate (WAS). The ZFB cultured in WAS showed significantly higher (P<0.05) aggregation (81.2%) than AS and control (21.6-45.5%). The mean cell number in blastocysts derived from AS and WAS (81.4-89.3 cells/blastocyst) was significantly higher (P<0.05) than that of control (63.8 cells/blastocyst). In Experiment 2, effects of 150 ug/ml PHA treatment on the aggregation efficiency and developmental competence of embryos were investigated. The ZFB cultured in AS with PHA showed a higher (P<0.05) aggregation rate (90.0%) than that in AS without PHA, control with PHA, and control (39.2%, 57.9% and 17.5%, respectively). In conclusion, aggregation of porcine ZFB treated with PHA and agarose substrate could be a useful technique for producing improving blastocyst development with increased mean cell number of blastocysts in pigs.
In the present study of this experiment was to understand the expression of apoptotic gene expression in the ovary of miniature pigs and pigs on the 15th day of estrus. Also the compare and analyze of programmed cell death type(Apoptosis and autophagy) expression pattern during mature oocyte on the miniature and normal pig cells. Analysis of mRNA gene expression of ovary in miniature and normal pigs on the 15th day of estrus showed that the expression of genes related to Autophagy (ATG13, MAP1LC3, Beclin1) was high in normal pigs but the expression of ATG1 and ATG5 genes was low. In addition, the expression of genes related to apoptosis (Casp-3, BAX) was high in the mini pigs, and the gene related to the LH hormone was high in the miniature pigs, whereas the expression of the gene related to the FSH hormone was high in the normal pigs. On the other hand, the result of muture oocyte on the miniature and normal pig cells is the expression of Casp-3 protein was moust high from treatment of FL+rapa (FSH+LH and Rapamycin) of the oocyte on the miniature pig cell. However, MAP1LC3 expression was higher in the oocytes of treatment of rapanycine treatment on the nomal pig cells. There was no gene expression in cumulus cells of matured oocytes in mini pig cells, whereas MAP1LC3 expression was higher in oocyte cumulus cells matured in normal pig cells. It was confirmed that the miniature and normal pigs showed different programmed cell death patterns, In the case of oocytes matured in miniature pig cells, MAP1LC3 gene expression was found to be low in spite of treatment with Autophagy regulator.
In our previous studies, the cardiac xenotransplantation from an alpha-1,3-galactosyltransferase knockout pig (GT-MCP-MCP) to cynomolgus monkeys showed a mean survival of 38 days. The objective of this study is to genetically upgrade the GT-MCP-MCP pig, to further enhance membrane cofactor protein (MCP) expression and to express an endothelial specific thrombomodulin (TBM). MCP is a complement regulatory protein and TBM is a coagulation inhibitor. As the dicistronic cassette for wild-type-based MCP and TBM concurrent expressions does not show any increase of MCP, we optimized the MCP codon usage (mMCP) and substituted mMCP for MCP. When the mMCP-TBM cassette was transfected to HeLa cells, we were able to find an increased expression of MCP and endothelial cell-specific TBM expression. The cassette was then transfected into ear-skin fibroblasts isolated from one-month-old #23-4 of a GT-MCP-MCP pig, and the cell populations expressing MCP were obtained by MACS cell sorting. We performed a single cell culture of the selected cells, and obtained clones over expressing 90% MCP. The cells of a clone were used as a donor for nuclear transfer and generated GT-MCP/-MCP/mMCP/TBM pig. The transgenic pig was confirmed to be carrying the cells expressing MCP and functioning as an inhibitor against the cytotoxic effect of normal monkey serum, comparable with donor cells. Thus, we believe that the GT-MCP/-MCP/mMCP/TBM transgenic pig would be potential for the prolongation of xenograft survival in the recipients.