검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 644

        521.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        This experiment was conducted to clarify the antitussive effect of Fritillaria unibracteata Hsiao et K. C. Hsia. The antitussive effect in ethanol (75, 50, 30%) extracts from F. unibracteata was relatively high. The ethanol extracts of 20, 40 mg/kg concentrations were especially good antitussive effect. The ethanol extracts of F. unibracteata showed lower antitussive activities of 20~30% than sodium chloride injection used as a blank space control.
        528.
        2011.09 KCI 등재 서비스 종료(열람 제한)
        Ethanol treatment during the brain growth spurt period has been known to induce the death of Purkinje cells. The underlying molecular mechanisms and the role of reactive oxygen species (ROS) in triggering ethanol-induced Purkinje cell death are, however, largely unresolved. We undertook TUNEL staining, western blotting assay and immunohistochemistry for the cleaved forms of caspase-3 and -9, with calbindin D28K double immunostaining to identify apoptotic Purkinje cells. The possibility of ROS-induced Purkinje cell death was immunohistochemically determined by using anti-8-hydroxy-2'deoxyguanosine (8-OHdG), a specific cellular marker for oxidative damage. The results show that Purkinje cell death of PD 5 rat cerebellum following ethanol administration is mediated by the activation of caspase-3 and -9. However, unexpectedly, TUNEL staining did not reveal any positive Purkinje cells while there were some TUNEL-positive cells in the internal and external granular layer. 8-OHdG was detected in the Purkinje cell layers at 8 h, peaked at 12-24 h, but not at 30 h post-ethanol treatment. No 8-0HdG immunoreactive cells were detected in the internal and external granular layer. The lobule specific 8-OHdG staining patterns following ethanol exposure are consistent with that of ethanol-induced Purkinje cell loss. Thus, we suggest that ethanol-induced Purkinje cell death may not occur by the classical apoptotic pathway and oxidative damage is involved in ethanol-induced Purkinje cell death in the developing cerebellum.
        529.
        2011.09 서비스 종료(열람 제한)
        The Egr family of zinc finger transcription factors consisting of 4 members (Egr1 to -4) regulates critical genetic programs involved in cellular growth, differentiation, and function. Especially, the critical role for Egr1 in regulating luteinizing hormone responsiveness was demonstrated by using gene-targeted mouse models. Other members of Egr family were shown to be involved in other cellular and developmental processes. To understand if Egr3 is implicated in ovarian functions, we focused on identifying cell type-specific and subcellular localization of Egr3 in cycling mouse ovaries and oocytes. RT-PCR analyses show that Egr3 mRNA is expressed in the mouse ovary and oocytes. By immunofluorescence staining, we observed that Egr3 is weakly expressed in subsets of granulosa cells. Interestingly, Egr3 seems to be co-localized with meiotic spindle in some oocytes in the ovarian section. Therefore, we examined Egr3 localization in MI oocytes cultured in vitro. We confirmed co-localization of Egr3 and microtubule in the mouse oocyte during meiosis I. Egr3 localization is noted around condensing chromosomes during prometaphase I (PMI). At metaphase I (MI) and MII, Egr3 is localized on meiotic spindle and also around each cytosolic microtubule organizing centers (MTOCs) in a punctate pattern. To examine if microtubule is required for correct positioning of Egr3 on this structure, we observed the pattern of Egr3 in oocytes matured under taxol or nocodazole. In taxol-treated oocyte, Egr3 and gamma-tubulin complex are enlarged. In nocodazole-treated oocyte, Egr3 localization on spindle and MTOCs are abolished. Thus, Egr3 localization seems to require the presence of intact microtubule. Collectively, our result shows for the first time that Egr3, a transcription factor, is localized on meiotic spindle of maturing mouse oocytes. The work suggests a novel role for Egr3 as a factor involved in MTOC dynamics during meiosis.
        530.
        2011.09 서비스 종료(열람 제한)
        The Egr family of zinc finger transcription factors consisting of 4 members (Egr1 to Egr4) regulates critical genetic programs involved in cellular growth, differentiation, and function. They are co-ex-pressed in many different tissues, suggesting that they may have some redundant functions. While it is clear that estrogen regulates Egr1 in estrogen sensitive breast cancer cells, function of Egr1 and mechanisms by which estrogen (E2) and/or progesterone (P4) regulates Egr1 in uterus still remain unexplored. Thus, we have examined regulatory mechanisms by which Egr1 is regulated in the uterus and abnormal uterine phenotypes of Egr1(-/-) mice. Eight-week-old female mice were ovariectomized (OVX) and rested for a week. Uteri of OVX mice treated with various concentrations of E2 and/or other hormones were collected at 2 h after hormone treatment unless otherwise indicated. ICI 182,780 [estrogen receptor (ER) antagonist] or RU486 [progesterone receptor (PR) antagonist] was injected to OVX mice 30 min prior to hormone treatments. OVX Egr1(+/+) and Egr1(-/-) mice were treated with E2 and/or P4 to examine expression patterns of genes important for estrogen responses, and steroid hormone-induced cell proliferation in the uterus. Collected uteri were utilized for RT-PCR, realtime RT-PCR, Western blotting and histological analyses. Egr1 mRNA was rapidly induced with the highest level at 2h after E2 treatment and gradually deceased to basal levels at 12 h. Pretreatment of ICI 182,780 significantly reduced E2-induced increase of Egr1. However, an agonist for GPR30, a membrane estrogen receptor failed to induce mRNA expression of Egr1, suggesting that E2-dependent Egr1 transcription is mainly regulated via nuclear estrogen receptor, ER. P4 effectively dampened E2-dependent Egr1 transcription and its antagonistic effects were partially interfered with RU486 pretreatment. Histological analyses with BrdU incorporation experiments showed that vascular permeability (an early estrogen response) but not cell proliferation (a late response) was significantly impaired in the uteri of E2 treated OVX Egr1(-/-) mice. Interestingly, some genes involved in early estrogen responses such as Bip and HIF-1a but not those in late responses are dysregulated in uteri of Egr1(-/-) mice. Collectively, our results show that E2 transiently induces Egr1 via activation of nuclear ER. P4 antagonizes E2-dependent Egr1 regulation via PR. Impaired early estrogenic responses in Egr1(-/-) uteri could be due to aberrant gene expression affected by loss of Egr1 which act as a master regulator of estrogen actions in the uterus.-ex
        531.
        2011.09 서비스 종료(열람 제한)
        In particular, maternal prostacyclin (PGI2) is critical for embryo implantation and the action of PGI2 is not mediated via its G protein-coupled membrane receptor, IP, but its nuclear receptor, peroxisome proliferator-activated receptor δ (PPARδ). Recently, several studies have shown that PGI2 enhances blastocyst development and/or hatching rate in vitro, and subsequently implantation and live birth rates in mice. However, the mechanism by which PGI2 improves preimplantation embryo development in vitro remains unclear. Using molecular, pharmacologic and genetic approaches, we show that PGI2-induced PPARδ activation accelerates blastocyst hatching in mice. mRNAs for PPARδ, RXRs (heterodimeric partners of PPARδ) and PGI2 synthase are temporally induced after zygotic gene activation and their expression reaches maximum levels at the blastocyst stage, suggesting that functional complex of PPARδ can be formed in the blastocyst. Carbaprostacyclin (cPGI, a stable analogue of PGI2) and GW501516 (a PPARδ selective agonist) significantly accelerated blastocyst hatching but did not increase total cell number of cultured blastocysts. Whereas U51605 (a PGIS inhibitor) interfered with blastocyst hatching, GW501516 restored U51605-induced retarded hatching. In contrast to improvement of blastocyst hatching by PPARδ agonists, PPAR antagonists significantly inhibited blastocyst hatching. Furthermore, deletion of PPARδ at early stages of preimplantation mouse embryos caused delay of blastocyst hatching, but did not impair blastocyst development. Taken together, PGI2-induced PPARδ activation accelerates blastocyst hatching in mice.
        532.
        2011.08 KCI 등재 서비스 종료(열람 제한)
        Leaf structure is one of the important agronomic traits. A rolled leaf mutant was induced from an ethyl methane sulfonate (EMS)-treated japonica rice, 'Koshihikari'. The rolled leaf mutant showed phenotypes of reduced leaf width and leaf rolling. In addition, several abnormal morphological characteristics were observed, including dwarfism, defected panicle, delayed germination, and lower seed-setting. Microscopic analysis revealed that the number of small veins was decreased and the sizes of adaxial bulliform cells were reduced in the mutant leaves. The genetic study with two F2 populations from the crosses of the rolled leaf mutant with 'Koshihikari' and Milyang23 suggested that the mutant phenotype might be controlled by a single dominant gene.
        536.
        2010.04 KCI 등재 서비스 종료(열람 제한)
        We carried out to better understand calcium behavior in plant growing in media with different calcium levels, deficiency (3), normal (1), and surplus (3). Growth of cucumber plants did not appear significant difference among calcium levels by 7 days after transplanting, but growth rate at 14 days was the highest in normal and followed deficiency and surplus. Increase in calcium concentration treated resulted in not only an excessive Ca uptake of plant but also a proportional decrease in Mg contents. In addition, excessive absorbed Ca was preferentially accumulated in stem and root to avoid leaf damage. Oxalate playing a role as a mediator of excessive Ca through Ca-oxalate crystal formation in cell was analyzed. Oxalate content in leaves was proportionally increased with an increase in calcium level in media, and the correlation coefficient was 0.94(>0.001), while Ca and oxalate in stem and roots did not show significant relation. Ca-oxalate crystal isolated from different Ca-treated leaves and stem was observed using SEM-EDX. Large amount of Ca-oxalate crystal was formed with an increase in Ca concentration. This means that excessive Ca in cell is immobilized through the formation of Ca-oxalate crystal with oxalate bio-synthesized.
        537.
        2010.03 KCI 등재 서비스 종료(열람 제한)
        Recently IMO and IALA have developed the strategy of e-Navigation and the concepts of VTM to enhance the safety, efficiency and security of vessel traffic and protection of the marine environment. And current technical and functional trends require vessel traffic management systems to be improved so as to control vessel traffic not only in waters of harbour area, but also within EEZ waters. Under the consideration of these circumstances, a three-layered vessel traffic management system was proposed in this paper. The proposed system consists of three sub-systems, called Local VTS, Regional VTS and National VTS, and those sub-systems are designed respectively to be suitable for managing vessel traffic within their own jurisdiction waters.