빈번한 가뭄의 피해는 수자원의 양극화를 초래하고 있다. 국내에서는 2011년부터 2017년 사이에 국지적이고 주 기적인 이상 가뭄이 지속되어 10년 가뭄 빈도로 설계된 소규모 저수지의 저수율이 감소하였다. 이러한 저수율의 감소 는 수질을 떨어트릴 수 있고 이미 확보된 용수의 사용마저 제한할 수 있다. 따라서 가뭄에 대비하고 극복하기 위해서 는 수질관리와 가뭄 빈도의 재산정이 필요하다. 이 연구는 저수지에서 수질 변화의 원인인 잠재적 오염물질을 추정하고, 가뭄 기간 동안 저수지의 저수율 감소와 그에 따른 수질 변화를 검토한 것이다.
This study assessed the levels of water qualities and microbials contamination of inland olive flounder farms in Jeju in the summers from 2015 to 2017. Three farms (A-C) located in a concentrated area using mixing coastal seawater and underground seawater and one farm (D) located in an independent area using only coastal seawater were selected. Total ammonia nitrogen (TAN) reached a maximum of 0.898 ± 1.024 mg/L as N in the coastal seawater of A-C, which was close to the limit of the water quality management goal of the fish farm. TAN in the influent from A-C was up to three times higher than that of D, so that the discharged water did not spread to a wide range area along the coast and continued to affect the influent. TAN of the effluent in A-C increased by 2.7-4.6 times compared to the influent, resulting in serious self-pollution in the flounder farm. Heterotrophic marine bacteria in the influent of A-C was about 600 times higher than D, and the discharge of A-C was increased by about 30 times compared to the influent.
Pilot-scale coagulation and sedimentation processes were operated to investigate the T-P (Total phosphorus) removal efficiency. A multiple regression model was also derived to predict the water quality improvement effect with river water characteristics. The inflow rates for the pilot-scale facility were 157–576 m3/day, and the coagulant doses were in the range of 13.7–58.5 mg/L (average 38.9 mg/L) for PAC (Poly alum chloride) and 16.5–62.1 mg/L (average 36.0 mg/L) for alum. The results found that the influent BOD (Biochemical oxygen demand) and T-P concentrations were 4.9 mg/L and 0.115 mg/L, and the removal efficiencies were 52.7% and 59.4%, respectively. T-P removal efficiencies on wet weather days were higher by 10% than dry weather days because influent solids influenced T-P's coagulation process. The pH of river water was 6.9–7.8, and the average pH was 7.3. Although the pH variation was not significant, the trend showed that the treatment efficiency of T-P and PO4-P removal increased. Thus, the pH range considered in this study seems to be appropriate for the coagulation process, which is essential for phosphorous removal. The T-P removal efficiencies were 19.6–93.3% (average 59.2%) for PAC and 16.4–98.5%(average 55.9%) for alum; thus, both coagulants showed similar results. Furthermore, the average coagulant doses were similar at 42.4 mg/L for PAC and 41.3 mg/L for alum. When the T-P concentration of the effluent was compared by the [Al]/[P] ratio, the phosphorus concentration of the treated water decreased with an increasing [Al]/[P] ratio, and the lowest T-P concentration range appeared at the [Al]/[P] ratio of 10–30. A seasonal multiple regression analysis equations were derived from the relationships between 10 independent and dependent variables (T-P concentration of effluent). This study could help lake water quality maintenance, reduce eutrophication, and improve direction settings for urban planning, especially plans related to developing waterfront cities.