Although the effect of elevated carbon dioxide (CO2) on Phalaenopsis plant flowering, biomass, and photosynthesis has received intensive study, whether elevated CO2 affects plant requirements and sensitivity to potassium sulfate (SOP) during the reproductive growth stage remains unclear. To evaluate the combined effect of CO2 and SOP provision on crassulacean acid metabolism orchids, we cultivated Phalaenopsis Queen Beer ‘Mantefon’ under ambient and elevated CO2 treatments (≈ 400 or ≈ 720 μmol×mol-1, respectively) and four levels of SOP supply for 20 weeks after treatments (WAT): potassium and sulfate levels by 10.41 and 1.96 mmol·L-1 (SOP1), 5.98 and 0.90 mmol·L-1 (SOP2), 12.80 and 1.96 mmol·L-1 (SOP3), and 14.83 and 3.16 mmol·L-1 (SOP4), respectively. The number of floral buds and flowers decreased in the plants grown under elevated CO2 than in those grown under ambient CO2, regardless of the SOP level; however, the reduced production of floral buds and flowers did not affect the dry mass of shoot, root, and spike at 20 WAT. There were significant interactive effects of CO2 and SOP on root biomass accumulation and net CO2 uptake. The stimulation of biomass partitioning on the root, as a sink source, observed due to the uptake of elevated CO2 was improved under increased SOP supply. Under ambient CO2, the leaf critical SOP level was SOP1 for root and spike biomass accumulation. Plants grown under elevated CO2 were more sensitive to SOP treatments, with higher essential leaf levels of SOP.
The slaughter of livestock is inevitably required to obtain meat products from livestock. Since slaughter means pain and death for animals, reducing the pain and distress of animals during slaughter is very important from a perspective of animal welfare based on the principle of respect for life. Generally, two stunning methods, CO2 stunning and electrical stunning, are used for slaughter. When the carotid arteries of the lungs are cut off for bleeding, the bronchial tubes are also severed. To determine the degree of blood inflow into the lungs through the severed bronchial tubes, the prevalence rates of pulmonary diseases and pulmonary congestion in slaughtered pigs were analyzed. In this study, the prevalence of pneumonia was 24.9% in Slaughterhouse A using the gas method, but it was decreased by about 10% to 15.7% and 12.6%, respectively, in Slaughterhouses B and C using the electric method. On the other hand, the prevalence of pulmonary congestion in Slaughterhouses A, B, and C was 4.24%, 14.10% and 16.40%, respectively. In other words, the prevalence of pulmonary congestion was higher by about 10% in the groups of pigs slaughtered by the electric method (Slaughterhouses B and C) than in the group of pigs slaughtered by the gas method (Slaughterhouse A). These results indicate that blood inflow into the pulmonary alveoli led to a diagnosis of pulmonary congestion instead of pneumonia in some pigs with pneumonia. In short, it was found that about 10% of pigs stunned by the electric method were not in a state of complete unconsciousness but in a partially conscious state during slaughter. It is suggested that slaughterhouses should be equipped with gas stunning equipment instead of applying the electric method due to lower costs.
대용량 화학 및 청정에너지의 운반체인 수소는 석유화학 산업 및 연료전지 등에서 많이 활용되는 중요한 산업용 기체이다. 특히 수소는 주로 증기개질 및 가스화를 통해 화석 연료에서 생성되며 부산물로 이산화탄소가 발생한다. 따라서 고 순도 수소를 얻기 위해서는 이산화탄소를 제거해야 한다. 본 총설에서는 배러 단위[1 Barrer = 10−10 cm3 (STP) × cm / (cm2 × s × cmHg)]로 보고된 이산화탄소로부터 수소를 분리하는 프리스탠딩 고분자 분리막 및 혼합매질 분리막에 초점을 맞추었 다. 최근 보고된 다양한 논문들을 분석하여 분리막의 구조, 형태, 상호 작용 및 제조 방법에 대해 논의하고 구조-물성 관계를 이해하여 향후 더 나은 분리막 소재를 찾는 데 도움이 되고자 한다. 다양한 분리막의 성능 및 특성 검토를 통해 수소/이산화 탄소 분리에 대한 Robeson 성능 한계선을 제시하고, 가교, 혼합 및 열처리 등의 기술을 사용하여 분리 특성을 개선하는 다양 한 혼합매질 분리막에 대해 논의하였다.
Electrochemical reduction of carbon dioxide to valuable chemicals is a promising way of storing renewable energy through electric-to-chemical energy conversion, while its large-scale application is in urgent need of cheap and high-performance catalysts. Herein, we invent a convenient method to synthesize N-doped porous carbon by ammonia etching the pyrolysis carbon of petroleum pitch. We found the ammonia etching treatment not only increase the pyridinic-N content, but also enlarge the specific surface area of the petroleum pitch-based porous carbon. As a cheap and easily available catalyst for carbon dioxide electroreduction, up to 82% of Faradaic efficiency towards carbon monoxide was obtained at − 0.9 V vs the reversible hydrogen electrode in 0.1 M KHCO3. After a long time electrocatalysis of more than 20 h, the Faradaic efficiency of carbon monoxide remains 80%, indicating the porous carbon as made have an ultra-high stability as catalyst for carbon dioxide reduction. Our work provides a new technology to economically prepare efficient electrocatalysts for carbon dioxide reduction.